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Abstract 

 

The rapidly expanding volume of biological and biomedical literature motivates demand 

for more friendly access. Better automated mining of this literature can help find useful 

and desired citations and can extract new knowledge from the massive biological 

“literaturome.” The research objectives presented here, when met, will provide 

comprehensive text mining utilities within the MetNet (Metabolic Network Exchange) 

(Wurtele et al., 2007), platform to help biologists visualize, explore, and analyze the 

biological literaturome. The overarching research question to be addressed is how to 

automatically extract biomolecular interactions from numerous biomedical texts. Here are 

the specific aims of this work. 

1. Research on the text empirics of interaction-indicating terms to find more clues to 

improve the current algorithm applied in PathBinder to more precisely judge 

whether biomolecular interaction descriptions are present in sentences from the 

biological literature. 

2. Based on these research results, extract interacting biomolecule pairs from 

literature and use those pairs to construct a biomolecule interaction database and 

network. 

3. Integrate biomolecular interaction-indicating term extraction into MetNet’s 

existing metabolomic network database. 

4. Apply all of the above results in PathBinder software.  

5. Quantitatively evaluate the success of algorithms developed based on the text 

empirics results. 

This work is expected to advance systems biology by answering scientific questions 

about biological text empirics, by contributing to the engineering task of building MetNet 

and key constituent subsystems of MetNet, and by supporting the MetNet project through 

selected maintenance tasks. 
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Chapter 1. Background: text mining of biological literature for 

interaction extraction  

 
In recent years more and more collections of gene sequence and expression data have 

appeared. Each gene’s function and role in a pathway needs to be clarified and organized 

systematically. A lot of works involve creation of biomolecular interaction databases that 

are useful for understanding biological processes (Ono et al., 2001). A database could be 

populated through laboratory research, like MIPS (Pagel et al., 2005) and KEGG (Minoru 

et al., 2006). But a lot of information exists throughout the scientific literature about 

interactions. Considerable work has been done to extract interactions from literature, e.g. 

the Database of Interacting Proteins (Salwinski et al., 2004) and BIND (Bader et al., 

2001). However many of these databases are manually populated. The interactions 

existing in the natural language of the literature are not easily extracted by humans, so the 

task to create such a database is time and labor intensive. Therefore, an increasing 

amount of work has focused on automatic interaction extraction from scientific literature 

based on text-mining technology in order to help researchers find knowledge from 

information already in the literature and even to construct interaction databases 

automatically. 

 

Current topics of research in text mining of biomedical literature include named entity 

recognition, text classification, synonym and abbreviation extraction, and relationship 

extraction (Cohen et al., 2005). For example, Cohen et al. (2005), and Yu et al. (2002, 

2003) used different methods including statistical methods, Supporte Vector machines, 

and pattern matching to extract synonyms. Similar methods also were used to extract 

genes and proteins from the literature (Nenadic et al., 2003; Tanabe et al., 2002). Most of 

this research is based on the MEDLINE literature collection. 

 

MEDLINE, provided by the National Library of Medicine 

(http://www.nlm.hih.gov/pubs/factsheets/MEDLINE.html), and developed by the 

National Center for Biotechnology Information (NCBI), is one of the most well-known 

http://www.nlm.hih.gov/pubs/factsheets/medline.html�
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biomedical text information resources. It contains approximately 18 million references to 

articles in the life sciences, especially biomedicine. This database is growing at a high 

rate, challenging people to keep up with new scientific information. NCBI provides a 

query interface, PubMed (http://www.pubmed.com), to let users search stored citations 

and do many other tasks. It also provides the Entrez Programming Utilities 

(http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html) to let developers write 

software that accesses this data. 

 

A considerable amount of research has been published on improving retrieval from 

MEDLINE and other biomedical literature. SLIM (Muin et al., 2005) was developed by 

NCBI itself. It uses user-friendly slide bars to help users filter search results. GENIA 

(Kim et al., 2003) annotated MEDLINE citations with more detailed tags to make text 

mining on the corpus more convenient. Textpresso (Muller et al., 2004) maintains a 

database where full texts about Caenorhabditis elegans tagged with ontology terms are 

stored, so it can provide ontology-aware search on its corpus.  

 

Some researchers have investigated new methods to retrieve citations besides occurrences 

of keywords. eTBLAST (Pertsemlidis et al., 2004; Lewis et al., 2006) breaks user queries 

and citations into vectors representing keyword occurrence rates and computes 

similarities among the vectors. It also investigates BLAST-like methods of aligning 

queries and documents. Similar investigations improving similarity rankings in retrieval 

include PubFinder (Goetz et al., 2005), SGO (Homayouni et al., 2005), and the work of 

Rubin et al. (2005). 

 

Some works focus on analyzing search results from Entrez Programming Utilities 

provided by PubMed. XplorMed (Perez-Iratxeta et al., 2001, 2002, 2003) classifies 

results into MeSH categories and then displays keywords in all results where the 

keywords appear. The keywords are determined by their co-occurrence frequencies with 

other words. In addition, XplorMed finds words related to each keyword based on co-

occurrences and finds documents where keywords co-occur. MedMiner (Tanabe et al., 

1999) mainly aims to find good citations in MEDLINE for users. But it also can search 

http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html�
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for individual sentences with a desired keyword co-occurrence. The co-occurrence can be 

of biomolecules, and the keywords can include interaction-indicating terms. Thus the 

results of a search can be sentences containing a tri-occurrence of biomolecules and an 

interaction-indicating term. 

 

Analysis of passages containing biological term co-occurrences or tri-occurrences 

enables the extraction of relations among biological entities. Starting mostly from the late 

1990s, considerable research on interaction extraction from literature has been reported. 

There are different kinds of information that can be extracted from literature such as 

identifying synonyms (Cohen et al., 2005) and contrastive relationships, which are 

usually stated as contrastive negation patterns like “A but not B has some properties”  

(Kim et al. 2005). Most studies focus on extracting interaction relationships among genes 

or proteins. The resulting interaction databases can support annotation of gene function, 

which will be increasingly useful as more and more gene expression data become 

available. Interaction extraction also may identify information that is only implicitly 

present in the literature (Wren et al., 2004). Moreover, the extracted interactions can be 

further processed into interaction networks and other advanced resources (Yuryev et al., 

2006).  

 

1.1 Review of interaction extraction methods 

 

To extract the right information, many systems that mine a literature database do part-of-

speech (POS) tagging and then named entity recognition. Recognizing biological entities 

facilitates automatic biological relationship extraction. Usually this process detects an 

appearance of a pair of biological entities, sometimes plus a relationship-indicating word, 

and then extracts the relationship between the pair of entities. The type of extracted 

relationship may be decided by the entities and the relationship-indicating word. Most of 

them focus on the relationships among genes or proteins. The scale of such systems is 

potentially greater than manually inputting interactions because it can save a lot time and 

labor.  
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There are different methods to automatically extract the interactions between a pair of 

biomolecules from literature, including simple co-occurrence extraction methods, parsing 

and pattern matching methods, including natural language processing (NLP) based 

methods and statistical analysis methods (Hirschman et al., 2002; Yeh et al., 2003). 

Boundaries between the categories are not always clear. Some works in this area are 

reviewed next. 

 

Extraction based on co-occurrences of biomolecules 

  

The most direct method is to find an appearance of a co-occurrence of two objective 

biomolecules in literature. Dragon Plant Biology Explorer (DPBE) (Vladimir et al., 2005) 

parses documents provided by users using basic co-occurrence criteria. It shows the 

results to users in, among other forms, a network graph of interactions. Albert et al. (2003) 

applied this method to create a protein interaction database for nuclear receptors, and 

post-processed this database by manual curation to delete false interactions. PDQ Wizard 

(Grimes et al., 2005) and the work of Hofmann et al. (2005) also use co-occurrence to 

extract relations between biomolecules plus later filtering of extraction results. Whatizit 

(Rebholz-Schuhmann et al., 2008) provide a Web service to find co-occurrences of two 

biomolecules in submitted text.  Kabiljo et al. (2009) used perl regular expressions to 

extract two gene/protein names occuring together within a sentence that has an 

interaction word between them. The interaction words list is from other projects. 

 

The co-occurrence of biomolecule names in the literature also can be used in other ways. 

ACS (Jelier et al., 2005; Van der Eijk et al., 2004) placed biomolecules in a Euclidean 

space by mapping the co-occurrence relations between biomolecules to the space. It 

started putting nodes in the space randomly and used the co-occurrence of two nodes in 

one document to move their position in the space document by document. Then, it can 

find or evaluate interactions based on the distance between two biomolecules in the space, 

thus improving recall by finding those pairs not found to be co-occurring in literature. 

(Recall is the proportion of relevant items that are retrieved out of all relevant items 

available. This is compared to Precision, which is the proportion of relevant items in a 
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retrieved set to all the items retrieved.) LMMA (Li et al., 2006) combines co-occurrence 

mining results and microarray analysis to construct a biological network. Bibliometrics 

(Stapley et al., 2000) use gene pairs co-occurring at least three times to construct a gene 

network. 

 

Extraction based on parsing text 

 

Co-occurrence methods are relatively simple and cannot, in theory, match the 

performance of methods that incorporate more information such as template matching 

and sentence parsing. Usually in the final part of these kinds of approaches, a sentence or 

an abstract or the parsed result is matched against predefined patterns to check whether 

an interaction is described. The parsing method can be shallow parsing, which usually 

outputs a sequence of units, or full parsing, which outputs a full parse tree.  

 

Yakushiji et al. (2001) used a term recognizer to identify multi-word terms and a shallow 

parser to reduce lexical ambiguity. Then they did full parses of the sentences. Domain-

specific knowledge, including a set of target verbs and mapping rules provided by 

domain specialists, was used to construct frame representations, which show interaction 

structures. 

 

GENIES (Friedman et al., 2001) extracted semantic patterns by observing typical 

semantic and syntactic co-occurrence patterns in a sample corpus using semantic 

relationship categories and biological objects. It did full parsing over documents and 

output a frame structure if parsing was successful based on the patterns.  

 

MedScan (Daraselia et al., 2003; 2004; Novichkova et al., 2003) broke sentences into 

tokens and recognized them based on the corresponding lexemes. Its syntactic parser then 

built a number of alternative syntactic structures for a given sentence using the rules 

defined in its grammar. A semantic interpreter transformed the syntactic tree into a 

normalized semantic tree, which represents logical relationships between objects. Finally, 

an ontology interpreter utilized ontology and a knowledge base to evaluate each semantic 



www.manaraa.com

6 

  

tree and convert the valid ones into ontological representations. An ontology is defined as 

a collection of concepts representing domain-specific entities, a set of relationships 

between the concepts, and the range of admissible values for each concept. It was 

constructed after analyzing about 2000 MEDLINE abstracts.  

 

Temkin et al. (2003) created a context free grammar by manually analyzing a corpus of 

500 non-topic-specific scientific abstracts from MEDLINE and used it to parse 

documents to extract interactions. 

 

PathwayFinder (Yao et al., 2004) combined adjacent features, grammar features and 

pattern features to extract interactions. The patterns were manually defined and can be 

enriched through interaction with users. Three features are combined to compute the 

pattern score for documents that have been subjected to full parsing. 

 

RelEx (Fundel et al., 2007) used public-domain NLP tools to preprocess and fully parse 

sentences. This results in Chunks Dependency Parse Trees, in which the nodes can be 

chunks composed of several words. Then, it extracts paths in the trees that match three 

predefined rules about descriptions of relations. If there is a match, an interaction has 

been extracted. Santos et al. (2005), Natarajan et al. (2006), Fundel et al. (2007) and 

Rinaldi et al. (2007) used full parsing to verify matches to predefined rules about 

descriptions of relations. Miyao et al. (2009) used different natural language parsing tools 

to extract interactions and compared the results.   

 

Some researchers have used third party parsing tools to analyze documents. Santos et al. 

(2005) used a third-party parser to fully parse sentences to find subject-verb-object 

relationships. They maintained a list of verbs derived manually. Natarajan et al. (2006) 

used a commercial parsing tool to do full parsing over biomedical literature to find 

relationships among genes about which they were interested.  

 

Although full parsing analyzes syntax in depth, the final results are still not reliable 

because full parsing usually returns multiple, ambiguous results and is domain specific. 
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In addition, full parsing is slow (Dershowitz, 2006). Shallow parsing that is faster and 

outputs a series of tokens is therefore used in other research instead. Ono et al. (2001) 

manually defined a set of patterns containing any of four interaction-indicating keywords: 

“interact,” “associate,” “bind” and “complex,” and used them to match tagged and 

shallow parsed sentences. These patterns, augmented by more verbs, were also utilized in 

PPLook (Zhang et al., 2010) to extract interaction descriptions. Arizona Relation Parser 

(McDonald et al., 2004) broke sentences into words and then transformed them to 

recognized tokens. Shallow parsing was used to create phrase chunks from those tokens 

based on hundreds of parsing rules and used predefined knowledge patterns to match a 

chunks sequence. Koike et al. (2005) used an NLP model to extract gene/protein 

interactions. It first recognizes the gene/protein name and Gene Ontology (GO) function 

name in the literature and then extracts ACTOR-OBJECT (gene-function) relationships 

through shallow parsing, noun phrase bracketing and sentence structure analysis. Hunter 

et al. (2008) also utilized manually extracted rules in a shallow parsing procedure. 

 

There are also methods of matching predefined patterns without parsing procedures in 

published works. GIS (Chiang et al., 2004) generated sentence expression patterns, which 

are distributions of words and terms in relation descriptions, from sample sentences. Then 

it judged sentences according to the sentence expression patterns to determine whether 

relations between biomolecules are described. 

 

GIFT (Domedel-Puig et al., 2005) tried to match substrings of sentences to predefined 

simple patterns including a predefined verb list.  

 

Huang et al. (2004) and Yao et al. (2005) used dynamic programming to automatically 

create patterns from a training document set and to align the citations to the patterns to 

extract interactions.  

 

Extraction based on statistical analysis (data mining) 
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Although pattern-matching methods can yield relatively high precision, recall may be low 

because the patterns defined do not include all situations in which interactions appear.  

To improve recall, some researchers have used statistical methods based on the simple 

method of counting tri-occurrences mentioned earlier. Marcotte et al. (2001) found 

discriminating words using a training set of 260 MEDLINE abstracts describing 

interactions, based on differences in frequencies of occurrence of those words. They used 

these words’ probabilities of appearing in documents describing interactions to train 

Naïve Bayesian classifiers to score a document and then judge whether a document 

describes an interaction. Ramani et al., (2005) also used this classifier approach to 

improve the precision of its interaction extraction in its interaction database ID-Serve. It 

used protein co-citation analysis and then computed the probability of each co-citation 

based on the total number of abstracts, the number of abstracts in which both proteins 

appear, and the number where one of the pair appears, and used a threshold to select a set 

of final interaction candidates. 

 

Some statistical applications apply statistical machine learning methods on parsed results. 

Huang et al. (2008) trained a SVM (support vector machine) with a vector representing 

different features of documents by 0 or 1 and then uses this SVM to classify interaction 

description. Zhou et al. (2008) also used a machine learning method to estimate 

probabilities that help parse the document. Niu et al. (2010) used a linear kernel based 

SVM to extract interactions. The features used were contextual, lexical, syntactic, 

keyword-based, pattern-based, and so on. Fayruzov et al. (2009) also used the SVM 

technique to extract protein interactions from natural text based on deep syntactic features 

(i.e., grammatical relations), shallow syntactic features (part-of-speech information), and 

lexical features, then evaluated the different features’ impacts on extraction results. Li et 

al. (2010) used a coupling technology to couple a number of lexical and syntactical 

features as kernel input, and then the kernel was used by an SVM to classify sentences 

regarding their descriptions of interactions. Sætre et al. (2008) used syntactic shallow 

dependency parsing to parse a sentence and then SVM-extracted rules from a training 

corpus. Kim et al. (2010) used a method to parameterize non-contiguous syntactic 



www.manaraa.com

9 

  

structures as well as semantic roles and lexical features to make learning structural 

aspects from a small amount of training data effective. 

 

Besides SVM, other machine learning methods have also been used. Bundschus et al. 

(2008) treat each word x and relation label y as a pair, and from a sequence of these pairs 

use the CRF (conditional random field) technique to extract interaction descriptions. 

They trained on a corpus to find a probability function for inferred interactions, using a 

CRF based on features including orthography, word shape, n-gram properties, dictionary 

membership, a context dictionary window, start window, and negation. Chowdhary et al. 

(2010) chose a Bayesian network (BN) to extract protein-protein-interaction word triples 

in sentences. They manually selected 12 features to let Bayesian network learn the rules 

behind a manually created corpus. 

 

Wren et al. (2003, 2004) assigned a weight to the potential relationship between co-

occurring biomolecule names. This value was 1 – rn, where r is 0.83 when the co-

occurrence is in a sentence and 0.58 when the co-occurrence is in an abstract but not the 

same sentence. These figures are based on the research of Ding et al. (2002), who 

estimated the difference between the probabilities that an interaction is described given a 

co-occurrence of biomolecules in a phrase vs. in a sentence. Based on this weight, they 

judge the relatedness between genes. After that, they separated genes into sets and ranked 

the cohesion of a gene to a gene set by comparing the observed frequencies of the gene’s 

co-occurrences with the nodes in the set to the expected frequencies. The expected 

frequencies are calculated by summing of the probabilities that this gene is connected to 

each gene of the gene set. This probability is derived by dividing the number of genes 

connected to a gene by the total number of genes in the set.  

 

 

1.2 Existing problems 

 

Despite the advances noted above, a major issue that needs to be solved in order to 

properly understand the reliability of extracted interactions is specifying a good ranking 
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policy. Such a policy would enable better assessment of putative interactions based on 

both assessments of individual sentences containing the relevant biomolecule names, and 

on combination of the evidence provided by these sentences.   

 

In addition, for extraction of interactions from the biological literature, the two categories 

of approaches typically used have limitations.    

 For protein-protein co-occurrence counting or protein-protein-interaction tri-

occurrence counting methods, high recall but low precision tends to occur (Albert 

et al., 2003). A lot of systems involve manual post-processing to improve the 

precision. This way does not eliminate the time and labor costs of the manual 

annotation method. However, it is computationally simpler and faster. 

Furthermore, it can be improved by better understanding and use of evidence 

provided by an understanding of empirical properties of relevant texts. 

 The methods that parse and match interactions patterns can get a higher precision. 

These patterns can be predefined or determined with a machine learning 

procedure. Sentences matching the patterns are identified and the pattern 

determines the specifics of the interaction. The patterns are induced from existing 

sentences describing interactions so if a new sentence matches a pattern, a 

relatively high precision is likely. However, it is not practical to manually find all 

patterns of biomolecular interaction (Huang et al., 2004) and NLP is not very 

precise so far (Yao et al., 2004). Not all interaction descriptions satisfy any 

pattern in a given set of patterns, so some interactions will not be extracted by this 

method, (i.e., there will be a lower recall). For example, MedScan (Daraselia et 

al., 2003) obtained a recall of 21% with relatively restrictive templates, while 

Koike et al. (2005) achieved 54% with more unconstraining, inclusive templates 

that assume some syntactic analysis. 

 The statistical methods reviewed focus on the overall evaluation of biomolecule 

interactions. They do not try to find the specific text unit where the interactions of 

a specific pair of biomolecules are described, which could be the interest or 

requirement of users. For this reason, we cannot easily compare them to other 

methods. 
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Chapter 2. Research method and result 

2.1 Text empirics research overview 

As discussed earlier, either simply counting tri-occurrences or using pattern matching has 

limitations we wish to overcome. We seek to advance understanding about the properties 

of biomedical texts and to apply this knowledge to automatic identification of 

biomolecular interactions. Properties of texts were identified empirically (i.e., by 

examining actual sentences) and used to evaluate the probability that a given sentence 

describes an interaction between a specific biomolecule pair. A major issue in evaluating 

such extracted interactions is how to specify a good ranking policy. Such a policy would 

facilitate assessment of putative interactions. 

By empirical we refer to knowledge about text properties derived from “experience or 

observation” (e.g., dictionary.reference.com/browse/empirical). We derive our 

observations by manually examining corpora, and tabulating and analyzing the passages 

therein. This differs from other common approaches for extracting knowledge from text, 

such as natural language processing (NLP), which deduces knowledge from passages 

based on syntactic and semantic rules, and machine learning (ML). ML offers a corpus-

based, statistical approach like the text empirics approach, but differs in that, with ML, 

text properties are found automatically by a computer. This has the following 

shortcomings compared to using text empirics.  

1) Classification rule sets (typically arranged in decision trees) derived by ML 

usually include uninteresting junk mixed in. As a result, 

2) the rules derived by ML are typically omitted from publications in favor of 

conclusions about the parameters of the ML process itself. As a result,  

3) the outcome of ML can be harder to apply than the results of an empirical text 

analysis because ML-derived knowledge tends to be less readily available in a 

directly usable form, while text-empirics-derived results must necessarily be 

disseminated in an explicit form readily used by software designers. 
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2.2 Advancing text empirics and its application for extracting biomolecular 

interactions from the literature 

2.2.1 Previous work on sentence structure properties 

The first step is identifying sentences containing a particular pair of biomolecules. The 

structure of these sentences can give clues that help enable extraction of the biomolecular 

interactions they describe (Ding et al., 2002). For example, consider these two sentences: 

3'-O-(4-Benzoyl)benzoyl-ATP (Bz2ATP), an analog of ATP (Bz2ATP), containing 

a photoreactive benzophenone moiety, was used as a probe of the ATP (Bz2ATP), 

binding site of myosin subfragment 1 (SF1). (Mahmood et al., 1984) 

 

We also found that the rate constants of elementary steps become progressively 

slower starting from ATP binding to the myosin head and ending by ADP 

isomerization, and this stepwise slowing may be the essential and integral part of 

the energy transduction mechanism by muscle. (Kawai et al., 2003) 

 

These sentences differ in the number of appearances of the biomolecules, their positions 

in the same or different phrases, the position of the interaction indicator word (usually a 

verb — here, “bind”), and so on. The second sentence describes the interaction between 

ATP and myosin more directly. Clues to automatic recognition of interactions in such 

sentences are provided by various such properties of sentences. 

We chose MEDLINE as the repository to analyze. While these records may not 

completely reflect the idea that an article tries to convey, they usually contain the abstract 

and thus the most important information the authors wish to convey. Using MEDLINE, 

Ding et al. (2002) showed that sentences are useful text units for automatically extracting 

interactions. Therefore, we collected sentences containing biomolecule co-occurrences to 

analyze as the basis of this work.  

To analyze passage properties for interaction extraction, some operational definitions 

need to be given: 
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We have manually created a list of IITs based on reading several hundred MEDLINE 

abstracts. For example, activate, activation, etc. can describe an interaction between two 

biomolecules, as in “the activation of A by B.”  

To extract an interaction, we require a sentence to contain two biomolecules of interest. 

However, such a sentence does not necessarily describe an interaction. For example, the 

sentence 

 “Both A and B can bind to C.” 

does not describe an interaction between A and B, even though it describes interactions 

between A and C and between B and C. Our hypothesis is that we can find properties of 

sentences from the MEDLINE collection that can support automatic interaction 

extraction. The first goal, therefore, is to advance understanding of relevant sentence 

properties. The second, related goal is to better understand properties of IITs. The third 

goal is to use the results of the first and second goals to predict whether a sentence 

describes an interaction. The fourth goal is to scale up by generating and evaluating a 

database of biomolecular interactions. 

By analyzing typical passages from MEDLINE, it is possible to advance toward those 

goals by empirically investigating certain questions, such as the following: 

1) How can the presence of IITs be used to infer the type of interaction between two 

specific biomolecules? 

2) If pphrase is the likelihood that biomolecules co-occurring in the same phrase are 

described by the phrase as interacting, how does pphrase differ from psentence, the 

analogous situation where they are in different phrases of the same sentence? 

Term Definition 

sentence 
Either an article title or a word sequence beginning with a capital letter 
and ending with a period. 

phrase 

A word sequence occurring inside a sentence, and begins and ends 
with: 
, | ; | : | . | <the beginning of the sentence> | <whitespace>-
<whitespace> | ( | ). 

IIT 
Interaction-indicating term. A word, often a verb, that can describe an 
interaction between two biomolecules. 
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3) How does the order of appearance of three important words — two biomolecules 

and an IIT — in a phrase or sentence affect the probability that the biomolecules 

are described as interacting? 

4) How do properties of IITs occurring near two biomolecule names — such as their 

identities, inflections, roots, and semantic categories — affect the probability that 

they help describe an interaction between the biomolecules? 

For questions 1–4, Ding et al. (2002) collected 303 MEDLINE abstracts and extracted 

664 sentences, based on ten queries to PubMed. Each query consisted of two biomolecule 

names known to interact. They were elicited from biologists who were requested to 

suggest queries typical of those likely to be made. Some further details about this corpus 

appear in Ding et al. (2002), and a list of the abstracts in the corpus may be downloaded 

from http://ifsc.ualr.edu/jdberleant/IEPA/IEPA.htm. Each sentence was manually 

analyzed with respect to the properties related to questions 1–4 above and tagged as to 

whether or not it described an interaction between the two query biomolecules.  

The results for questions 1 and 2 (Table 1) indicate that the probability that an interaction 

is described when two biomolecules co-occur in a phrase is higher than when they are in 

different phrases in a sentence (67 percent versus 33 percent). Secondly, if an IIT appears 

with the two biomolecules, the probability that an interaction is described is higher than 

without an IIT present (55 versus 7.99 percent and 71 versus 0 percent). These two 

comparisons are statistically significant (p<0.001, χ2 test). 

 

Table 1. Biomolecule co-occurrences in sentences and phrases, with and without IITs. 

 
  # (%) that describe 

the 

interaction 

Total 

number 

Sentences where two biomolecules tri-occur 

with at least one IIT 

331 (55%) 606 

Sentences where two biomolecules co-occur 

without any IIT 

3 (7.9%) 38 
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Table 1 continued 

All sentences where two biomolecules co-occur 334 (52%) 644 

Phrases where two biomolecules tri-occur with 

at least one IIT 

236 (71%) 334 

Phrases where two biomolecules co-occur 

without any IIT 

0 (0%) 17 

All phrases where two biomolecules co-occur 236 (67%) 351 

Sentence co-occurrences that are not also 

phrase co-occurrences 

98 (33%) 293 

For question (3), we investigated how the presence of an IIT between the two 

biomolecules differs from the presence of an IIT but not between the biomolecules. The 

results are shown in Table 2. 

 

Table 2. Percentages (i.e., precisions) of sentences and phrases describing interactions, by IIT location. 

 

 
IIT 

intervening 
IIT elsewhere 

in sentence 
IIT in either 

place 
Phrases in which two biomolecules co-
occur 

63% 24% 45% 

Sentence co-occurrences that are not also 
phrase co-occurrences 

30% 9.1% 21% 

Both phrase and sentence co-occurrences 48% 17% 34% 

Percent of interaction descriptions 77% 23% 100% 

Table 2 shows that the presence of an IIT intervening between the two biomolecule 

names is associated with a relatively high likelihood that an interaction is described. 

Consequently, for descriptions in which one or more IIT was present, most (77 percent) 

had an IIT between the biomolecule names.  

2.2.2 Interaction terms and probability that an interaction is described 

2.2.2.1 Interaction term properties for interaction extraction 

In previous research (Berleant et al., unpublished work), we found that the presence of an 

IIT with a co-occurrence of biomolecule terms suggests an interaction with higher 

precision than a co-occurrence of biological terms without an IIT. IITs thus can play a 

role in predicting interactions. However, interaction terms have their own properties, such 
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as verb tense and part of speech (e.g. noun, adjective, or verb). In addition, verbs can 

indicate several different categories of biomolecular interactions, such as association, 

regulation, and so on. These different properties of interaction terms may affect the 

description of the biomolecular interactions.  

Our objectives in identifying the effect of interaction term properties can be divided into 

two parts: understanding IIT categories and understanding IIT forms. For example, in the 

following three sentences, the verb “bind” appears in three different forms in describing 

the interaction between “ATP” and “myosin.” 

(1) ATP binds single-headed myosin VI following a two-step reaction 

mechanism with formation of a low affinity collision complex (1/K(1)' = 5.6 mm) 

followed by isomerization (k(+2)' = 176 s-1) to a state with weak actin affinity. 

(Robblee et al., 2004) 

 

(2) ATP binding to myosin subfragment 1 (S1) induces an increase in 

tryptophan fluorescence. (Reshetnyak et al., 2000) 

 

(3) The data demonstrate that unlike any previously characterized myosin a 

single-headed myosin V spends most of its kinetic cycle (>70%) strongly bound 

to actin in the presence of ATP. (De La Cruz et al., 1999) 

In these cases, the forms of “bind” are present, present continuous, and past tense in these 

three sentences, respectively. Sentences (1) and (2) describe the interaction between 

myosin and ATP with the verb root “bind,” but sentence (3) does not describe the 

interaction between myosin and ATP, even though it has the same verb root.  

It would be useful to be able to determine the probabilities of interactions that might be 

described in a sentence based on the properties and identity of a given IIT in it. 

Here is a five-category list suggested by Ding (personal communication), based on the 

previous analysis of 644 sentences. 
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i Association 

ii Modification 

iii Negative regulation 

iv Positive regulation 

v Transportation 

An alternative set of categories used by colleagues at Procter & Gamble (P & G) is: 

i. Activate directly 

ii. Activate indirectly 

iii. Activate ligand mediated  

iv. Inhibit directly 

v. Inhibit indirectly 

vi. Inhibit ligand mediated 

vii. Bind to 

From a biological perspective, the categories of interaction in MetNetDB 

(http://metnet.vrac.iastate.edu/MetNet_db.htm, Wurtele et al., 2007), are:  

i. Enzymatic reaction 

ii. Translation 

iii. Transcription 

iv. Composition-AND 

v. Composition-OR  

vi. Transport 

vii. Transport/channel-type facilitators 

viii. Bind 

ix. Transport/ATP-driven transporters 

x. Transport/PEP-dependent transporters 

xi. Transport/decarboxylation-driven transporters  

xii. Transport/electron-flow-driven transporters 

xiii. Transport/light-driven transporters 

xiv. Transport/mechanically driven transporters 

xv. Positive regulation 

http://metnet.vrac.iastate.edu/MetNet_db.htm�
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xvi. Positive regulation/allosteric activation  

xvii. Positive regulation/competitive activation 

xviii. Positive regulation/covalent modification 

xix. Positive regulation/complex formation. 

xx. Positive regulation/transcriptional activation  

xxi. Positive regulation/direct 

xxii. Positive regulation/coactivation 

xxiii. Positive regulation/translational activation 

xxiv. Positive regulation/indirect  

xxv. Negative regulation  

xxvi. Negative regulation/allosteric inhibition 

xxvii. Negative regulation/competitive inhibition 

xxviii. Negative regulation/covalent modification 

xxix. Negative regulation/complex formation  

xxx. Negative regulation/transcriptional inhibition 

After reviewing all these categories, the P & G categories seem too detailed in some 

ways, as well as not comprehensive. MetNetDB is too biologically oriented and detailed, 

and not all of its categories are appropriate for text mining. In addition, through 

experience, we have found that to extract interactions from sentences, some terms, like 

“interact,” “influence,” “form,” etc., do not reflect specific interactions but only state that 

an interaction exists. Two new categories, create and vague, were added. The category 

create holds instances of “form,” “produce,” “construct,” and other similar words 

describing that one biomolecule can be created from another biomolecule. The category 

vague holds instances of “interact,” “influence,” “affect,” and similar words describing 

that an interaction occurs between two biomolecules without a detailed description of it, 

like “oxidize.”  

We finally settled on the following categories: 

vi Association 

vii Modification 

viii Negative regulation 
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ix Positive regulation 

x Transportation 

xi Create 

xii Translation & transcription  

xiii Vague 

The forms of an interaction term that we account for include: 

i Present tense 

ii Present continuous (i.e., present progressive) tense 

iii Past tense 

iv Perfect tense 

v Noun 

vi Adjective 

vii Adverb 

 
3.2.2.2 Training corpus creation and analysis 

 
Corpus creation  

 

The research to judge the effects of various properties on the probability of an interaction 

being described was conducted through analysis of sample data. A hand-annotated corpus 

of sentences was used for exploration of this problem. The corpus is from the PUBMED 

query results for 10 pairs of biomolecules (nitrite & xanthine, pyruvate dehydrogenase & 

phosphofructokinase, indole acetic acid & starch, glucose & starch, glucose-6-p & 

starch, carotenoid & IPP, cre & cytokinin, acetyl-CoA & leucine, glucose & pyruvate, 

and ATP & myosin). Each pair was sent to PUBMED (http://www.pubmed.com) as a 

query. and the citation results were saved. The sentences in the result citations in which 

both members of a pair of biomolecules co-occur with an interaction-indicating term 

(total of 320 sentences) were collected and analyzed. The last publication date of those 

citations was June 2007.  
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Each objective property, such as the syntactic or semantic category of an interaction-

indicating term in each sentence, was recorded numerically in one table for each 

biomolecular pair (see Table 3). All IITs investigated in this corpus and also used in the 

later real application for interaction extraction with their category information are in 

Appendix II. 

 

For each sentence, whether an interaction is described between the pair of biomolecules 

(that is, the query which retrieved the sentence) was determined. I did the determination, 

except the difficult sentences, for which my advisor and biologists were asked to make a 

final decision. Whether there is an interaction description in a sentence will be a column 

in the final table (i.e. Table 3) of the corpus and will be expressed by 0 (if the sentence 

does not describe the interaction) or 1 (if the sentence does describe an interaction). The 

distance measurements are described by the number of words (5 in the example of Table 

2). The detailed description and the full example table are in Appendix I. 

 

Table 3. An example of an analysis of a sentence from the query: Nitrite & Xanthine.  
(1 means one property is positive and 0 means negative in one sentence, and a number greater than 1 
may mean the times a property appears or the position property). 
 
 
PMIDro Verb 

root 
Noun  Adjective Adverb Past 

tense 
….. Number of 

words from 
the nearest 
biomolecule 

between  
biomolecules? 
 

All in
a 
phrase? 
 

17202421 reduce 0 0 0 1 ….. 5 1 0 

 

In detail, for each sentence, its PMID and whether it describes an interaction are recorded 

in addition to each interaction-indicating term appearing in it. For each interaction-

indicating term in the sentence, its verb root, its exact spelling in the sentence, whether it 

is the correct interaction description term for the specific biomolecule pair, whether it 

describes the interaction in the sentence, its form (noun, adjective,…), its semantic 

category (association, modification,…), its distance from the nearest biomolecule in the 

specific pair, its distance from the other biomolecule of the specific pair (choosing the 

nearest one if more than one), whether it appears between the two biomolecules, whether 

it appears in a phrase with the two biomolecules, and whether it appears in a phrase with 

the two biomolecules and between them in this phrase are recorded. 
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Some sentences have very vague structures. The results of their analysis are also 

indefinite.  

 

 Some biomolecules are parts of other biomolecules. For example here are two 

examples: 

 

In contrast, the combination of lytB and a cDNA encoding IPP isomerase (ipi) was no 

more effective in enhancing carotenoid accumulation than ipi alone, indicating that the 

ratio of IPP and DMAPP produced via the DOXP pathway is influenced by LytB. 

(Cunningham et al., 2000) 

 

The enzyme isopentenyl pyrophosphate (IPP) isomerase catalyzes the reversible 

isomerization of IPP to produce dimethylallyl pyrophosphate, the initial substrate 

leading to the biosynthesis of carotenoids and many other long-chain isoprenoids. (Sun 

et al., 1998) 

 

Here we are interested in the biomolecule pair IPP and carotenoid. But IPP appears in 

these examples as a part of another biomolecule, IPP isomerase, which can be confusing 

when analyzing the sentence because isomerase is a very common suffix word and the 

combination of it with another bimolecule may not be a special biomolecule thus not 

collected in the dictionary. In these two examples, IPP isomerase is IPI, which is an 

important biomolecule. However, when faced with some combinations, it would be 

wrong to extract a part of the combination and use it as part of an interaction. An 

improved biomolecule dictionary would be a solution for keeping track of which 

common suffix or prefix combinations are to be considered breakable. The correct 

analyses of these two sentences are that the first one does not describe an interaction 

between IPP and carotenoid, but the second one does. 

 



www.manaraa.com

22 

  

A good dictionary also is useful in a situation involving several different words that 

actually indicate varieties of the same biomolecule or are synonyms. A good dictionary 

should be able to provide the information about this kind of relationship. 

 

Different uptake of pools of 14C-acetyl CoA, synthesized from injected 14C-acetate, and 

3H-acetyl CoA, synthesized through metabolic pathways of 3H-leucine, indicates the 

compartmentalization of acetyl CoA in the synthesis of saturated and unsaturated fatty 

acids.  

 

We want to judge whether this sentence describes an interaction between acetyl-coA and 

leucine. But this sentence only gives acetyl-coA and 3H-leucine, which is a subtype of 

leucine. If we do not know or the algorithm does not know the relation between 3H-

leucine and leucine, the analysis result for this sentence will be that there is no interaction 

described between leucine and acetyl-coA. Actually, 14C-acetyl CoA and 3H-acetyl CoA 

are also subtypes of acetyl-coA, so the correct analysis of this sentence is that it does 

describe an interaction between leucine and acetyl-coA and the interaction-indicating 

term is synthesize. 

 

 Sometimes, the combination of a biomolecule and a common word is not a special 

biomolecule.  

 

The Arabidopsis thaliana AHK4 histidine kinase (also known as CRE1 or WOL) acts as 

a cytokinin signal transducer, presumably, in concert with downstream components, 

such as histidine-containing phosphotransfer factors (AHPs) and response regulators 

(ARRs), through the histidine-to-aspartate (His-->Asp) phosphorelay. 

 

Here we are interested in CRE1 and cytokinin and we can see that CRE1 is a cytokinin 

signal transducer. Then the direct interaction described in this sentence is that CRE1 

transduces the signal of cytokinin. But consider the definition of signal transduction, 

which is the movement of signals from outside the cell to inside 

(http://www.med.unibs.it/~marchesi/signal.html). CRE1 is described as the first 

http://www.med.unibs.it/~marchesi/signal.html�
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component in the whole pathway of cytokinin signal transduction in this sentence, along 

with other downstream components. So we can conclude that CRE1 must interact with 

cytokinin to propagate the cytokinin signal. Therefore, the proper analysis of this sentence 

is that there is an interaction between CRE1 and cytokinin.  

 

 Sentences may have verbs that imply an interaction but do not directly describe an 

interaction. 

 

Conversely, cytokinin regulation of the early nodulin Nodule Inception1 (Mt NIN) 

depends on Mt CRE1. 

 

Xanthine nitration by myeloperoxidase required hydrogen peroxide and nitrite. 

 

Suicide inactivation of xanthine oxidoreductase during reduction of inorganic nitrite to 

nitric oxide 

 

In the first sentence, we are interested in interactions between cytokinin and CRE1. There 

is a relation between them described in this sentence: cytokinin regulation of something 

depends on CRE1; in other words, without CRE1, cytokinin can't regulate. Based on 

biological knowledge, we know CRE1 is a cytokinin receptor, so we can infer cytokinin 

needs to be bound by CRE1 to regulate something. But the sentence doesn't say that. And 

we can't know that from the sentence. The sentence says nothing about binding or 

receptors, and "depends" does not imply binding or receptors. What we can get from this 

sentence is that there is a relation between cytokinin and CRE1, but this sentence does not 

describe what the interaction is.  

The same situation occurs in the second sentence. Xanthine nitration requires nitrite, and 

we can tell xanthine and nitrite interact but the sentence does not explain what “nitration” 

consists of. So we cannot tell what the interaction is from the sentence unless “nitration” 

itself is a suitable answer. 
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The key words in these sentences are depend and require, and there are a lot of similar 

words like relate and respect.  

 

In the third sentence, it looks like probably the reduction process inactivates xanthine 

oxidoreductase, but the sentence doesn't say that. So we can infer that nitrite might have 

something to do with inactivating xanthine oxidoreductase, but it is only might. For 

“might” situation, see the following sections. 

 

To analyze sentences of this kind and be sure of a correct conclusion, we must conclude 

we cannot find a correct interaction-indicating term for the interaction between the two 

specified biomolecules in these sentences. Whether the sentence is considered to describe 

an interaction between the specified two biomolecules depends on the biologist. Some 

biologists think this kind of sentence does provide information about interaction between 

the biomolecules. 

 

 Some interactions are described using several interaction-indicating terms, and then 

it is hard to identify the right interaction term. 

 

Glucose was found to repress alpha-amylase and, more severely, maltase activity, thus 

repressing starch degradation by L. gongylophorus, so that we hypothesize that: 

 

The climacteric respiration burst was reduced by the action of IAA, and starch 

degradation and sucrose formation were delayed. 

 

Here is the analysis of the right interaction-indicating term which will be discussed 

further in section 2.2.4. We can see that glucose represses and IAA delays starch 

degradation. Glucose and IAA downregulate starch degradation. But we cannot say 

glucose represses starch or glucose degrades starch, which means the actual interaction 

term is not stated in the sentence. We can, however, infer that glucose and IAA preserve 

starch. It seems that, if we are interested in interactions among biomolecules A (glucose 

or IAA) and C (starch), these sentences imply one (preserve) but do not describe one. It 
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would be hard to design an algorithm to determine that. For our purposes, if we want to 

know whether A and C interact or not, this sentence is evidence that they do. But if we 

want to determine through software what the interaction is, this sentence is likely to 

mislead the algorithm, for neither repress nor degrade is right. The relationship between 

A and C is not one of either repressing or degradation. 

 

We could say the relation between A and C is “repress degradation of,” but in the corpus 

analysis we cannot record these kinds of interaction terms because they are combinations 

of terms. Actually biologists also are interested in this information when retrieving 

interactions. To make the system comprehensive and precise, in the analysis of the corpus, 

both “repress” and “degrade” will not be counted as correct interaction terms but the 

sentence is counted as describing the interaction between A and C.  

 

In fact we can summarize these kinds of situations in four categories: 

1. A downregulates change of B  

2. A upregulates change of B 

3. A downregulates production of B 

4. A upregulates production of B  

 

The first one is like the example sentences. A downregulates change in B: because A 

does not downregulate B, downregulate is not the interaction term. Because A does not 

change B, change is not the interaction term. We might conclude that A preserves B. For 

our analysis, we record that there is an interaction between A and B and but do not record 

either downregulate or change as their interaction term. 

 

For A upregulates change of B: here, A changes B so the interaction term is change. 

 

For A downregulates production of B: here A decreases B. It depends on whether 

downregulates means decreases. If it does, then the interaction term is downregulates. If 

it does not, then there is no interaction term stated. 
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The last one is "A upregulates production of B." Here, the interaction term is upregulates. 

Therefore: 

For A downregulates change of B, the interaction is preserve 

For A upregulates change of B, the interaction is change 

For A downregulates production of B, the interaction is downregulate 

For A upregulates production of B, the interaction is upregulate 

 

This relatively complex situation occurs because the interaction is actually between a 

biomolecule and a process. If in the future, we can treat such interactions (processes) as 

we currently do biomolecules, then we may look at processes as actors in interactions and 

the problem would be solved. 

 

 Some interactions include several interaction-indicating terms, but terms are too 

vague to be sure an interaction is in fact described. 

 

Hence, cytokinin signaling mediated by a single receptor, Mt CRE1, leads to an opposite 

control of symbiotic nodule and lateral root organogenesis. 

 

The CTK-mediated repression of LR initiation is transmitted through the two-component 

signal system and mediated by the receptor CRE1. 

 

Studies suggested that organic nitrite (R-O-NO) is produced from XO-mediated organic 

nitrate reduction. 

 

In these sentences, mediate is describing the relation between cytokinin (CTK) and CRE1 

or between nitrite and XO. However, not only two biomolecules are involved in the 

interactions, but also other biochemical actions like signaling in the first sentence. 

“Mediate” is too vague to conclude an interaction is described, and we cannot just say 

that CRE1 mediates CTK. This situation does not describe any specific interaction 

between CRE1 and cytokinin. Yet it does give some information about interaction 

between these two biomolecules. We could say it might describe the interaction between 
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CRE1 and CTK. To differentiate it from clearly stated interaction descriptions, we could 

count this sentence as 1/2 when we record its interaction score. However, it is very hard 

to define clear criteria to decide which situations to count 1/2. To make the system more 

objective and easily specified, for these situations, we count that there is an interaction 

described and score 1 for them.  

 

Some vague interaction-indicating terms, however, can describe interactions between two 

biomolecules. 

 

Our results shed light on a novel role of the recovery stroke: fine-tuning of this reversible 

equilibrium influences the functional properties of myosin through controlling the 

effective rates of ATP hydrolysis and phosphate release. 

 

Here we can find that ATP hydrolysis influences myosin. Or we also can say ATP 

influences myosin. Therefore, for this sentence, we consider that it describes an 

interaction between ATP and myosin and the interaction-indicating term is influence. 

 

 Some sentences contain interaction-indicating terms, but the terms do not indicate 

the right interaction but have the relation with the interaction between the two 

biomolecules. Those sentences usually describe the interactions but do not have the 

right interaction-indicating terms. 

 

A comparison of the glucose-6-phosphate isotope patterns in different pathways of the 

synthesis with the experimental data on the distribution of carbon isotopes in starch 

glucose of storing plant organs led to the conclusion that the starch resources are 

predominantly formed at the expense of glucose-6-phosphate of photorespiration. 

 

We can see the direct description between starch and glucose-6-phosphate is “starch is 

formed at the expense of glucose-6-phosphate.” There is no interaction term “formed at 

the expense of” in our lexicon of interaction terms. We can analyze it as describing that 

starch decreases glucose-6-phosphate. 
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 Some interactions are described in very vague ways in some sentences. 

 

Mutations in CRE1 reduced but did not eliminate the effect of cytokinin on gene 

expression for a subset of cytokinin-responsive genes and had little or no effect on others, 

suggesting functional redundancy among the cytokinin receptors. 

 

Because mutations of biomolecules usually lessen the effect of the original biomolecule, 

we can infer that CRE1 mediates cytokinin’s effect on cytokinin-responsive genes. But we 

still don’t know the interaction between CRE1 and cytokinin. However, from the last part 

of the sentence, far away from where it says that “mutations in CRE1 reduced but did not 

eliminate” cytokinin’s effect, it says this suggests “functional redundancy among the 

cytokinin receptors.” Then we can infer that CRE1 is a cytokinin receptor and therefore 

that the interaction is CRE1 binds cytokinin. Some publications pointed this out: 

“Identification of CRE1 as a cytokinin receptor from Arabidopsis” (Inoue et al., 2000).  

 

Here, we demonstrate that myosin VI gating is achieved instead by blocking ATP binding 

to the lead head once it has released its ADP. 

 

From the first glance, we did not find a direct interaction between myosin and ATP. There 

may be implicit interaction between ATP and myosin, which is that “blocking ATP 

binding to the lead head” can result in “myosin VI gating.” This implicit interaction is 

very vague. However, if we check the whole paragraph, what is really happening 

becomes clarified. 

 

A processive molecular motor must coordinate the enzymatic state of its two catalytic 

domains in order to prevent premature detachment from its track. For myosin V, internal 

strain produced when both heads of are [sic] attached to an actin track prevents 

completion of the lever arm swing of the lead head and blocks ADP release. However, 

this mechanism cannot work for myosin VI, since its lever arm positions are reversed. 
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Here, we demonstrate that myosin VI gating is achieved instead by blocking ATP binding 

to the lead head once it has released its ADP. 

 

We can see the head that binds to ATP is the myosin head in fact, so this sentence does 

describe a direct interaction between ATP and myosin: ATP binds to myosin. This 

interaction is extracted only after reviewing the whole paragraph, which is not expected 

for the automatic extraction algorithms this research is intended to support. 

 

The interactions in the sentences about CRE1 & cytokinin and ATP & myosin are direct 

interactions even though its description is very vague. However, some sentences contain 

interactions that are not direct, but implicit.  

 

Astrocyte-selective expression of pyruvate carboxylase (PC) enables synthesis of 

glutamate from glucose, accounting for two-thirds of astrocytic glucose degradation via 

combined pyruvate carboxylation and dehydrogenation 

 

In this sentence, the directly described interaction related to glucose is that PC enables 

conversion of glucose to glutamate. However, it mentions glucose degradation is via 

combined pyruvate carboxylation and dehydrogenation. In other words, pyruvate is 

carboxylated, which may mediate degradation of glucose. Therefore, pyruvate 

carboxylation has something to do with glucose degradation. But we don't know what the 

connection is. Maybe some other process or chemical degrades glucose and carboxylates 

pyruvate, but this sentence does not give enough information so we do not count there is 

an interaction between glucose and pyruvate described in this sentence. 

 

To be consistent, for implicit interactions or uncertain interactions described in sentences, 

we count them and record those interaction terms mentioned as the correct interaction 

description, if such an interaction term is present in the sentence. For those sentences 

indicating interactions but there is no appropriate interaction term inside the sentences, 

we count the sentences describing the interactions but do not record the interaction terms. 
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 Some interactions are not described directly in sentences. 

The greater suppressive effect of lactate as compared to pyruvate suggests that alteration 

of the NAD(+)/NADH ratio underlies the suppression of glucose oxidation by lactate. 

 

This sentence directly described the interaction between glucose and lactate (lactate 

suppresses glucose oxidation, so, lactate preserves glucose). However, it gives the 

information that the pyruvate has a comparable effect on glucose. Thus we can infer that 

pyruvate also suppresses glucose oxidation, and so pyruvate preserves glucose. 

 

 Some interaction descriptions involve negative words.  

 

It was found that acetyl-CoA produced from L-acetylcarnitine or by oxidation from either 

pyruvate, octanoate or palmitylcarnitine but not from leucine led to a stimulation of 

pyruvate carboxylation. 

 

The addition of the long neck domain of myosin Va to the Chara motor domain largely 

increased the velocity of the motility without increasing the ATP hydrolysis cycle rate, 

consistent with the swinging lever model. 

 

These two sentences contain negative words (not, without) for the interaction between the 

specific biomolecules. However, the results of their influence on interaction description 

are different. In the first sentence, from the information provided in the sentence, leucine 

is similar to pyruvate, octanoate and palmitylcarnitine in producing acetyl-coA by 

oxidation. So this sentence describes an interaction between acetyl-coA and leucine and 

the interaction-indicating term is produce. “Not” does not give the negative effect on the 

interaction description between acetyl-CoA and leucine. But the second sentence 

describes the reality that myosin increased the velocity of the motility without increasing 

the ATP hydrolysis cycle rate, so no interaction between ATP and myosin is described in 

this sentence. If we delete “without,” then the reality in the sentence becomes myosin can 

increase ATP hydrolysis that is an interaction description. However, the appearance of 

“without” denies it, so there is no interaction between myosin and ATP described here. 
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We can see negative words (e.g. not, without) can negate the interaction description 

(increasing the ATP hydrolysis in the second sentence) or alternatively might not 

influence the interaction description (as in the first sentence), which means the influence 

of negative words on interaction description is uncertain. Therefore, in our analysis, we 

do not count the effect of negative words on interaction descriptions. 

 

Result, data analysis and validation 

To see the influence that different verb forms and categories have, we need to analyze the 

data from this corpus.  

 

Summarization: The data were summarized based on different properties of interaction 

terms involved in each sentence. First, each pair’s data were summarized based on each 

column or each property by calculating the sum of the numbers in each column of each 

pair’s table (e.g., Table 3). However, the sum calculation was conducted conditionally. 

For each pair, there are different sums for different purposes. For sentence interaction 

description purposes, the sum of sentences where an interaction-indicating term with each 

form or category appears and the sum of sentences describing interactions where a verb 

with each form or category appears are calculated, plus the fraction of the second sum 

over the first sum was calculated.  

 

Table 4. Summary of the sentence data in the corpus 

 

pairs 

# (%) of 
sentences 
describing 
interactions 

sentence 

ATY & myosin 30/65% 46 

cre & cykotintin 35/81% 43 

nitrite & xanthine 29/64% 45 

glucose-6-p & 
starch 

20/71% 28 

glucose & starch 19/46% 41 
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Table 4 continued 

glucose & pyruvate 16/41% 39 

acetyl-coa & leucine 21/62% 34 

indole acetic acid & 
starch 

3/38% 8 

carotenoid & ipp 6/75% 8 

pyruvate 
dehydrogenase & 
phosphofructokinase 

1/4% 28 

Total 180/56% 320 

 

 

Table 4 gives an overview of the corpus results. Some pairs don’t have enough sentences 

in all of MEDLINE, and some have more than 30, in which case we used the 30 most 

recent ones. This resulted in 320 sentences of which 180 describe interactions between 

the query biomolecule pair. This is 56.25%. In this table, the first seven pairs have about 

30 qualified sentences, and the proportion that describes an interaction between the 

specific pair seems to cluster around 50%. The pair “indole acetic acid & starch” and the 

pair “carotenoid & ipp” don’t appear in many citations in MEDLINE, so all sentences (8 

for each) from all publications containing them were collected. The pair “pyruvate 

dehydrogenase & phosphofructokinase” has enough sentences mentioning them, but most 

of them do not describe interactions between them even though they are technically in a 

same pathway.  

 

 To analyze the sentences for different pairs, we need to do a summary for each factor 

influencing whether an interaction is described. As mentioned earlier, previous research 

exists, but here we mainly focus on interaction-indicating terms’ properties for the first 

time. 
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Table 5. The appearance of interaction-indicating terms’ properties in sentences of the corpus  

 

form or  
category 

ATP 
& 

myosin 

cre & 
cytokinin 

nitrite & 
xanthine 

g-6-p 
& 

starch

glucose
& 

starch

glucose 
& 

pyruvate

acetyl-coa
& 

leucine 

indole 
acetic 
acid & 
starch

carotenoid  
& ipp 

pyruvate 
dehydrogenase 
& phosphofru-

ctokinase 

Total 

Noun 29 35 36 23 25 31 28 7 4 19 237 
Adj 0 2 1 3 0 3 6 2 0 3 20 
Adv 0 0 0 0 0 0 0 0 0 0 0 

Present 15 7 12 2 11 15 6 1 3 4 76 
-ing 25 3 10 4 5 5 5 2 2 8 69 

past/perfect 16 16 25 16 14 9 24 5 4 12 141 

            

Association 29 33 2 7 1 3 8 0 4 2 89 

Modification 25 1 36 4 20 12 15 3 0 5 121 

negative  
regulation 

3 9 5 7 16 15 6 5 1 17 84 

Positive 
 regulation 

10 16 19 11 15 15 9 2 3 12 112 

transportation 7 5 0 3 0 3 1 1 0 1 21 

transcription 0 2 0 0 1 1 0 0 3 0 7 

Create 3 1 18 19 13 16 19 4 3 0 96 
Vague 13 6 7 3 5 14 11 3 1 13 76 

 

 Table 6. The appearance of interaction-indicating terms’ properties in sentences describing 
interactions 
 

 

Table 5 gives the summary of some of each interaction-indicating term properties in the 

corpus. We can see that of all interaction-indicating term forms, the noun appears in more 

sentences than any other form, and two forms (adverb and perfect tense) do not appear in 

any sentences. In fact, the form “perfect” could appear in some sentences, but a lot of 

form or  
category 

ATP 
& 

myosin 
cre & cytokinin 

nitrite & 
xanthine 

g-6-p
& 

starch

glucose
& 

starch 

glucose
& 

pyruvate

acetyl-coa
& 

leucine 

indole acetic
acid & starch

carotenoid 
& ipp 

pyruvate  
dehydrogenase
& phosphofru-

ctokinase 

Total

Noun 20 31 25 17 12 13 17 3 2 1 141 
Adj 0 1 0 3 0 1 3 1 0 0 9 
Adv 0 0 0 0 0 0 0 0 0 0 0 

Present 10 5 9 2 7 9 4 1 3 0 50 
-ing 13 1 7 3 4 2 2 1 1 1 35 

past/perfect 10 13 15 11 6 3 15 2 2 0 77 

            

association 18 30 2 4 0 0 3 0 3 0 60 

modification 17 0 26 4 16 4 11 2 0 0 80 

Negative 
 regulation 

1 7 2 5 6 5 2 3 1 1 33 

Positive 
 regulation 

4 12 13 5 4 3 4 0 1 1 47 

transportation 5 5 0 3 0 1 0 0 0 0 14 
transcription 0 2 0  0 1 0 0 2 0 5 

create 3 1 9 16 8 8 14 2 2 0 63 
vague 10 6 5 3 1 8 7 1 0 0 41 
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interaction-indicating terms have the same perfect form as past form, and so far the 

design of our algorithm does not include a method to recognize the difference between 

perfect and past tense when the spellings are the same. For example, “bound” is both the 

past form and perfect form of the term “bind.” Moreover, after investigating the corpus 

and following evaluation part, there are much fewer appearances of perfect tense than 

past tense in corpus and other sentence sets we used. Therefore, in the corpus 

construction and analysis, we integrated the perfect form’s appearance data into the past 

form. Note that some IITs have same spelling for nouns and present tense. Here we can 

manually differentiate them but not in algorithm. POS tagging is assumed to be available 

to use the results.  

For each sentence, we determined whether an interaction between the query biomolecule 

pair was described. Then we checked what forms or categories of interaction-indicating 

terms the sentence contains, to investigate the relationship between the interaction-

indicating terms’ forms/categories and interaction descriptions. For those sentences 

describing the interactions, let’s see the situation for different forms/categories. Table 6 

gives the data on different interaction-indicating term properties in sentences describing 

the specified interactions. We found that the form “noun” and the category 

“modification” appear more times than other forms and categories in sentences 

describing interactions. But they also appear in more sentences overall than others. To 

see the true situation, let’s see their ratio of appearance in the sentences describing 

interactions over appearance in all sentences for different interaction-indicating term 

properties. In Table 7, the total number of sentences where different interaction-

indicating terms’ forms/categories appear, and the number of sentences describing 

interactions where those interaction-indicating terms’ forms/categories appear, is given 

with the proportions of sentences describing interactions. Of all forms, the sentences 

containing an interaction-indicating term in the present form have the highest likelihood 

of describing interactions between the query biomolecule pair. The same situation occurs 

for the interaction-indicating term category “transcription” out of all categories. A more 

direct comparison can be found in Figure 1 and Figure 2. 
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Table 7. Data on likelihoods that sentences describe interactions when they contain biomolecule co-
occurrences that are not in the same phrase.  

Forms 

# (%) of 
sentences 
describing 

interactions 

Total 
sentences 

Noun 141 (59%) 237
Adjective 9 (45%) 20
Present 50 (66%) 76
-ing 35 (51%) 69
Past/Perfect 77 (55%) 141

Categories 

Association 60 (67%) 89
Modification 80 (66%) 121
Negative 
regulation 

33 (39%) 84

Positive 
regulation 

47 (42%) 112

Transportation 14 (67%) 21
Transcription 5 (71%) 7
Create 63 (66%) 96
Vague 41 (54%) 76

 

As in the earlier research (section 2.2.1), these probabilities are integrated into the score 

algorithm to help evaluate a given sentence’s probability of describing an interaction. 

This integration will be introduced in the following sections. To match the previous 

research results, which give different results for co-occurrence in phrases compared to 

sentences, here we also analyzed the interaction-indicating terms’ influence when co-

occurrence is in a phrase. Table 8 shows information about the number of phrases where 

interaction-indicating terms appear with different forms/categories. Similar to the 

situation for sentences, form “noun” and category “modification” appear in more phrases 

that other forms/categories. But in those phrases where those forms or categories appear, 

how many describe interactions? Table 9 gives the numbers of phrases in which different 

interaction-indicating terms that describe interactions appear. The number of phrases 

overall and phrases describing interactions are less than for sentences because a phrase 

has a lower probability of containing two biomolecules together. However, a phrase has a 

higher probability in our corpus of describing an interaction between the specific 

biomolecule pair when the pair co-occurs in it. We can see the fraction data in Table 10, 

which is similar to the sentence situation in Table 7. The proportion of phrases describing 

interactions is higher for almost each interaction-indicating term property than for 
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sentences, but the ranks of the interaction-indicating term forms/categories are similar. 

The “present” form and “transcription” category are still the form and category having 

the highest probability in the corpus that the phrases containing them describe 

interactions. A more direct comparison can be found in Figure 3 and Figure 4. 

 

Figure 1. Proportions of sentences with different interaction-indicating terms' forms describing 
interactions 
 

 
 
 
As mentioned for the sentence data discussion, these proportions were integrated into our 

algorithm, which will be introduced later, to evaluate the likelihood that a given sentence 

describes an interaction. More detailed proportion data for each pair in each form and 

category can be found in Appendix III. 
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Figure 2. Proportions of sentences with different interaction-indicating term categories describing 
interactions 

 

 
 

Table 8. The appearance of interaction-indicating term properties in phrases of the corpus  

 

form or 
category 

ATP 
& 

myosin 

cre & 
cytokinin 

nitrite & 
xanthine 

g-6-p
& 

starch

glucose
& 

starch

glucose 
& 

pyruvate 

acetyl-
coa 
& 

leucine 

indole 
acetic
acid & 
starch

carotenoid 
& ipp 

pyruvate 
dehydrogenase & 

phosphofru-
ctokinase 

Total 

noun 26 24 23 18 12 23 12 1 1 8 148 
adj 0 1 0 0 0 4 2 0 0 0 7 
adv 0 0 0 0 0 0 0 0 0 0 0 

present 12 2 7 0 7 9 2 1 2 0 42 
-ing 16 1 4 0 2 5 0 0 0 1 29 

past/perfect 15 10 13 15 7 12 12 0 0 2 86 

            

association 22 21 0 5 0 1 4 0 2 0 55 
modification 22 1 24 1 13 7 7 1 0 1 77 

negative 
regulation 

2 4 3 6 11 12 4 1 0 6 49 

positive 
regulation 

9 9 10 8 6 12 2 0 1 1 58 

transportation 7 2 0 2 0 2 0 0 0 0 13 
transcription 0 0 0 0 0 1 0 0 1 0 2 

create 2  9 17 7 9 7 0 0 0 51 
vague 10 4 6 2 3 13 6 0 0 4 48 

Proportions of sentences describing interactions

0.71 

0.67 

0.67 

0.66 

0.66 

0.54

0.42

0.39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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transportation 

modification 
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negative regulation 
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Table 9. The appearance of interaction-indicating term properties in phrases describing interactions 
 

 
Table 10. The percentages of phrases describing interactions by interaction-indicating term form and 
category. 
 

forms 
phrases 
describing 
interactions 

all 
phrases 

percentage 

noun 97 148 66% 

adj 3 7 43% 
adv 0 0 0% 
present 31 42 74% 
-ing 16 29 55% 
Past/perfect 56 86 65% 

categories    

association 41 55 75% 
modification 60 77 78% 
negative 
regulation 

24 49 49% 

positive 
regulation 

30 58 52% 

transportation 7 13 54% 
transcription 2 2 100% 
create 37 51 73％ 
vague 31 48 65% 

 
 
 
 
 
 
 

form or 
category 

ATP 
& 

myosin 

cre & 
cytokinin 

nitrite & 
xanthine 

g-6-p 
& 

starch 

glucose
& 

starch 

glucose 
& 

pyruvate

acetyl-
coa 
& 

leucine

indole 
acetic 
acid & 
starch 

carotenoid 
& ipp 

pyruvate 
dehydrogenase 
& phosphofru-

ctokinase 

Total 

noun 18 20 18 14 6 12 7 1 0 1 96 
adj 0 0 0 0 0 2 1 0 0 0 3 
adv 0 0 0 0 0 0 0 0 0 0 0 

present 10 1 5 0 5 5 2 1 2 0 31 
ing 8 0 2  2 3 0 0 0 1 15 
past 10 8 9 12 5 4 8 0 0 0 56 

perfect 0 0 0 0 0 0 0 0 0 0 0 

            

association 14 19 0 3 0 0 3 0 2 0 41 

modification 15 0 20 1 13 4 6 1 0 0 60 

negative 
regulation 

1 3 1 5 6 4 2 1 0 1 23 

positive 
regulation 

4 5 8 4 3 3 1 0 1 1 29 

transportation 4 1 0 2 0 0 0 0 0 0 7 
transcription 0 0 0 0 0 1 0 0 1 0 2 

create 2 0 5 14 6 6 4 0 0 0 37 
vague 8 4 4 2 1 8 4 0 0 0 31 
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Figure 3. Proportions of phrases with different interaction-indicating term forms describing 
interactions 

 
Figure 4. Proportions of phrases with different interaction-indicating term categories describing 
interactions 
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RCBD analysis 

To check whether the different interaction-indicating terms’ properties have different 

influences on the probability that a sentence describes an interaction between a specific 

biomolecule pair, we can use statistical methods to analyze our data. Randomized 

Complete Block Design (RCBD) is one of the most useful experimental designs. It 

groups similar experimental units into blocks (replicates) and the criterion of grouping is 

to make the experimental units in one group be maximally uniform. Each treatment must 

appear at least once in each block, and in each block, the appearance of each treatment or 

each experiment unit is randomized 

(http://www.ndsu.nodak.edu/ndsu/horsley/RCBD.pdf). These characteristics of RCBD 

match our corpus and following data analysis results very well so our data set can be 

treated as an RCBD design. The biomolecule pairs can be looked at as the blocks or the 

replicates. Each sentence containing them in our corpus can be looked at as an 

experimental unit. Each interaction-indicating term property can be looked at as a 

treatment in an RCBD design. The experimental result in each unit is whether the 

sentence describes the interaction between the biomolecule pair, but the data for each 

treatment to analyze are the summary of all experimental units in each block (each 

biomolecule pair). In fact, there are two RCBD designs, one for the interaction-indicating 

term forms and another for the categories. 

 

First, let’s look at the influence of interaction-indicating forms on likelihood that a 

sentence describes an interaction. 

Table 11 gives our RCBD experimental results. The interaction-indicating forms in the 

table are the treatments, and the 10 biomolecule pairs are the blocks. The adjective, 

adverb and perfect forms don’t have enough data available, so here we only analyze the 

difference significance among noun, present, present continuous (-ing), and past forms. 

In addition, the sentence set for the pair “pyruvate dehydrogenase” and “phospho- 

fructokinase” does not have many members describing interactions, so in the analysis 

part, we neglect it. First, we calculate the sum of the data in each block and each 

treatment, as shown in Table 12. 

 
 

http://www.ndsu.nodak.edu/ndsu/horsley/RCBD.pdf�
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Table 11. The proportions of sentences in each pair’s set describing specific interactions, broken out 
by different interaction-indicating term forms 
 

 noun adj adv present -ing past perfect 
ATY MYOSIN 0.69 0 0 0.67 0.52 0.63 0 
cre cytokinin 0.89 0.50 0 0.71 0.33 0.81 0 

nitrite xanthine 0.69 0 0 0.75 0.70 0.60 0 
glucose-6-p starch 0.74 1 0 1 0.75 0.69 0 

glucose-starch 0.48 0 0 0.64 0.80 0.43 0 
glucose pyruvate 0.42 0.33 0 0.60 0.40 0.33 0 
acetyl-coa leucine 0.61 0.50 0 0.67 0.40 0.63 0 
indole acetic acid 

starch 0.43 0.50 0 1 0.50 0.40 0 
carotenoid ipp 0.50 0 0 1 0.50 0.50 0 

pyruvate 
dehydrogenase 

phosphofructokinase 0.05 0 0 0 0.13 0 0 
 
 
 
Table 12. Influence of interaction-indicating term form on likelihood that a sentence describes an 
interaction: RCBD analysis step 1 
 

Rep noun present -ing past 
Total 
(pair) 

1 0.69 0.67 0.52 0.63 2.50 
2 0.89 0.71 0.33 0.81 2.75 
3 0.69 0.75 0.70 0.60 2.74 
4 0.74 1.00 0.75 0.69 3.18 
5 0.48 0.64 0.80 0.43 2.34 
6 0.42 0.60 0.40 0.33 1.75 
7 0.61 0.67 0.40 0.63 2.30 
8 0.43 1.00 0.50 0.40 2.33 
9 0.50 1.00 0.50 0.50 2.50 
Total 
(form) 5.44 7.03 4.90 5.01 22.39 

 
 

The RCBD analysis result is in Table 13 for the forms noun, present, -ing and past. 

Table 13. RCBD analysis results for interaction-indicating term form influence on the likelihood that 
a sentence describes an interaction. SOV: source of variance; DF: degree of freedom; SS: sum of 
squares; MS: mean squared; F: F test statistic 

 
SOV DF SS MS F 
pairs 8 0.307284 0.038411 1.718383 
forms 3 0.323536 0.107845 4.82471 
error 24 0.536465 0.022353  
total 35 1.167286   
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From the F test table, we found the relevant F value: F.05;8,24 = 2.34, F.05;3,24 =3.01. 

Therefore, for pairs, since Fpairs = 1.718383 < F.05;8,24 = 2.34 at the 95% level of 

confidence, we fail to reject H0: all pairs are equal or there is no clear difference among 

pairs’ influences on the likelihood that sentences describe the interaction. For different 

interaction-indicating term forms, since Fforms = 4.82471 > F.05;3,24 =3.01 at the 95% level 

of confidence, we reject H0: interaction-indicating term forms are the same. In other 

words, we are 95% confident that different interaction-indicating term forms have 

different influences on the likelihood that a sentence describes an interaction.  

For interaction-indicating term categories, the same analysis was used. 

 
Table 14. The proportions of sentences in each pair’s set describing specific interactions where 

different interaction-indicating term categories appear 

 

 association modification 
negative 

regulation 
positive 

regulation 
transportation transcription create vague 

ATY MYOSIN 0.62 0.68 0.33 0.40 0.71 0 1 0.77 
cre cykotinin 0.91 0 0.78 0.75 1 1 1 1 

nitrite xanthine 1 0.72 0.40 0.68 0 0 0.50 0.71 
glucose-6-p starch 0.57 1 0.71 0.45 1 0 0.84 1 

glucose-starch 0 0.80 0.38 0.27 0 0 0.62 0.20 
glucose pyruvate 0 0.33 0.33 0.20 0.33 1 0.50 0.57 
acetyl-coa leucine 0.38 0.73 0.33 0.44 0 0 0.74 0.64 
indole acetic acid 

starch 0 0.67 0.60 0 0 0 0.50 0.33 
carotenoid ipp 0.75 0 1 0.33 0 0.67 0.67 0 

pyruvate 
dehydrogenase 

phosphofructokinase 0 0 0.06 0.08 0 0 0 0 

  

Table 14 gives proportion data for each interaction-indicating form category (treatment) 

in each biomolecule pair (block). The categories “transportation” and “transcription” and 

the pairs “indole acetic acid & starch”, “carotenoid & ipp” and “pyruvate dehydrogenase 

& phosphofructokinase” have too many data of value 0, so they are not used in the 

analysis procedure, as too many 0s make the data useless. The data about term categories 

are listed in Table 15. 
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Table 15. Interaction-indicating term category influence on likelihood that a sentence describes an 
interaction: RCBD analysis step 1 
 

Rep association modification 
negative 

regulation 
positive 

regulation 
create vague 

Total 
(pairs) 

1 0.62 0.68 0.33 0.40 1 0.77 3.80 
2 0.91 0 0.78 0.75 1 1 4.44 
3 1 0.72 0.40 0.68 0.50 0.71 4.02 
4 0.57 1 0.71 0.45 0.84 1 4.58 
5 0 0.80 0.38 0.27 0.62 0.20 2.26 
6 0 0.33 0.33 0.20 0.50 0.57 1.94 
7 0.38 0.73 0.33 0.44 0.74 0.64 3.26 

Total 
(categories) 3.48 4.27 3.27 3.20 5.19 4.89 24.30 

 

The RCBD analysis results in Table 16 are for the categories association, modification, 

negative regulation, positive regulation, create and vague. 

 

Table 16. RCBD analysis result for interaction-indicating term category influence on sentence 
interaction description likelihood 

 
SOV DF SS MS F 
Pairs 6 1.074816 0.179136 3.076793 

Categories 5 0.53288 0.106576 1.830521 
Error 30 1.74665 0.058222  
Total 41    

 

From the F test table, we found the relevant F values: F.05;6,30 = 2.42, F.05;5,30 =2.53. 

Therefore, for pairs, because Fpairs = 3.0767793 > F.05;5,30 = 2.42 at the 95% level of 

confidence, we reject H0: all pairs are equal. That is, from the test results, we can say 

there is a difference among pairs’ influences on likelihoods that sentences describe 

interactions with 95% confidence. For different interaction-indicating term categories, 

because Fcategories = 1.830521 < F.05;5,30 =2.53 at the 95% level of confidence, we fail to 

reject H0: all interaction-indicating terms’ categories have the same influence on the 

likelihood of sentences’ describing interactions. So we cannot say that different IIT 

categories have an influence. It appears the interactions between some pairs are unique or 

exceptional.  

We also show the phrase-based experimental data about the forms and categories in 

Table 17. In this table we see that because the numbers of phrase examples where two 

biomolecules and at least one interaction-indicating term tri-occur are less than the 
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number of sentence examples, the result data have a lot of 0s and 1s. Too many 0s and 1s 

may not really reflect the true situation, so we did not do RCBD analysis for phrase 

experimental data. 

 

Table 17. The proportions of phrases in each pair’s set describing the specific interaction for 
different interaction-indicating term forms/categories  

 

Therefore, for sentence interaction evaluation, interaction-indicating terms’ categories 

give little help so it is not appropriate to use it to evaluate interaction description. Our 

algorithm will not use interaction-indicating terms’ categories. 

 
 
Sentence Evaluation Algorithm 

 
At this point, we wish to create an algorithm for evaluating the probability that a sentence 

describes an interaction between two given biomolecules. We will use odds from 

information about location of biomolecule names in sentences (from previous research, 

see Appendix IV) and about interaction-indicating term forms (from my research). We 

combined the evidence contributed by different sentence attributes by multiplying the 

 

noun adj adv Pre- 
sent 

-ing past Per-
fect 

Associ- 
ation 

Mo-
difi- 
ca- 
tion 

Negative 
regulation 

Positive 
regulati
on 

trans-
por-
ta- 
tion 

trans-
crip-
tion 

cre-
ate 

va-
gue 

ATY 
 MYOSIN 

0.69 0 0 0.83 0.5 0.67 0 0.64 0.68 0.5 0.44 0.57 0 1 0.8 

Cre 
 Cykotinin 

0.83 0 0 0.5 0 0.8 0 0.9 0 0.75 0.56 0.5 0 0 1 

nitrite  
xanthine 

0.78 0 0 0.71 0.5 0.69 0 0 0.83 0.33 0.8 0 0 0.56 0.67 

Glucose-6-p  
Starch 

0.78 0 0 0 0 0.8 0 0.6 1 0.83 0.5 1 0 0.82 1 

Glucose 
Starch 

0.5 0 0 0.71 1 0.71 0 0 1 0.55 0.5 0 0 0.86 0.33 

Glucose  
Pyruvate 

0.52 0.5 0 0.56 0.6 0.33 0 0 0.57 0.33 0.25 0 1 0.67 0.62 

acetyl-coa  
leucine 

0.58 0.5 0 1 0 0.67 0 0.75 0.86 0.5 0.5 0 0 0.57 0.67 

indole acetic 
 acid 
 starch 

1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 

Carotenoid 
 Ipp 

0 0  1 0 0 0 1 0 0 1 0 1 0 0 

Pyruvate 
dehy-
drogenase 
phosphofructo
- 
Kinase 

0.13 0  0 1 0 0 0 0 0.17 1 0 0 0 0 
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odds of the attributes, and normalizing. Done appropriately this returns the composite 

probability that the sentence describes the hypothesized interaction (Manning et al. 2008, 

sections 11.1, 11.3; Davis 1990, : 128-130). The precise formula we used is 

O(h|f1,...,fn)=O(h|f1)O(h|f2)...O(h|fn) / O(h)n-1, which expresses the odds of hypothesis h 

(here that a given passage describes an interaction between a given pair of biomolecules), 

given n sources of evidence and a default odds O(h) modeling the entire corpus. The 

O(h|fk), k =1,…,n, are the odds of the hypothesis, given sentence feature or attribute k as 

evidence. See Dickerson et al. (2005 section 2.3.3) and Berleant (2004). Specifically, in 

our method, given a sentence and two biomolecule names:  

1) Identify the co-occurrences of these two biomolecules in the sentence. Each co-

occurrence is treated separately. To rate a sentence containing more than one co-

occurrence: 

a. For each co-occurrence, determine the odds that it is part of an interaction 

description based on the locations in the sentence of the co-occurring 

biomolecules, and similarly, determine the odds based on the 

morphological form of the interaction-indicating term that the co-

occurrence is part of a description of an interaction between the given 

biomolecule pair. (See steps 2 and 3 respectively below.) 

b. Combine the odds of the co-occurrences based on location to get a 

probability that the sentence describes an interaction based on the location 

information. Also combine the odds of the co-occurrences based on 

interaction-indicating term form information to get a probability that the 

sentence describes an interaction based on the interaction-indicating term 

form information. There are two methods of combination, each of which 

can provide the pair of probabilities we seek (this pair will be combined 

together later, in step c). 

         

       Method 1:  

Convert each of the two odds for each co-occurrence into a 

probability, using p=odds/(1+odds). Separate them into two groups 

based on the sources of evidence (which are the location and 
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interaction-indicating term form.) In each evidence group (location 

and interaction-indicating term form), combine the probabilities of the 

co-occurrences to get the probability that at least one of the co-

occurrences in the sentence is in an interaction description based on 

the corresponding source of evidence (location or interaction-

indicating term form) using the following equation:  

 

p(at least one co-occurrence is in an interaction description) 

   =1-p(no co-occurrence is in an interaction description) 

=1-p(co-occurrence #1 is not in an interaction description)*p(co-

occurrence #2 is not in an interaction description)*p(co-

occurrence #3 is not in an interaction description)*… 

= 
i

p(1 co-occurrence i is not in an interaction description) 

=  
i

p(1(1 co-occurrence i is in an interaction description)) 

           

Note that the degenerate case where a sentence has only one co-

occurrence works with this formula too. 

 

       Method 2: 

         As in method 1, convert each co-occurrence odds (some based on location 

and some on interaction-indicating term forms) into a probability using 

p=odds/(1+odds). Separate them into two groups, one based on the 

location evidence and the other on interaction-indicating term form 

evidence. In each evidence group, take the maximum probability as an 

estimate of the sentence’s probability that it is in an interaction 

description based on the corresponding source of evidence (location or 

interaction-indicating term form): 

         p (at least one co-occurrence is in an interaction description) 

         =Max(p(co-occurrence i is in an interaction description)) for location 

evidence, and similarity for interaction-indicating term form evidence, 
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c. For the two probabilities from two groups of sources of evidences 

combine them according to: 

         p (the sentence describes the interaction) 

            =1 - (1- pposition)(1-pform). 

  

In the two probability combination methods, method 1 assumes each co-

occurrence is independent, and then each co-occurrence’s probability can be 

multiplied directly to give the final probability that there is a co-occurrence that is 

the interaction description. However, it is risky to assume they are independent, as 

there is typically no particular reason to believe they are independent. Moreover, 

from previous research (Berleant et al., see Appendix IV), multiple co-

occurrences do not necessarily improve the probability that a sentence describes 

an interaction. Method 2 avoids assuming independence by using the best co-

occurrence in a given sentence. Therefore, in my implementation, method 2 is 

used to combine evidence from the co-occurrences in a sentence. Note that, in 

method 2, choosing the best interaction-indicating term with highest odds is also 

used to assign the odds that a sentence describes an interaction when there are 

multiple interaction-indicating terms appearing with the co-occurrence in the 

sentence. Thus if we meet an interaction-indicating term and we cannot determine 

its form (noun or present when their spellings are the same,) we will use the form 

that brings larger odds.  

  

2) To calculate the odds O(co-occurrence i is in an interaction description) from 

location evidences, do the following. 

a. If the co-occurrence is within a phrase: 

i. If no interaction-indication term is in the phrase, estimate p=0.1 

ii. If an interaction-indicating term is in the phrase, 

1. if there is 1 co-occurrence in the phrase, estimate 

O2aii1=0.7/0.3=2.33 
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2. if there is >1 co-occurrences in the phrase, estimate 

O2aii2=0.86/0.14=6.1 

3. if there is not an interaction-indicating term between the 

co-occurring terms, estimate O2aii3=0.24/0.76=0.316, except 

if separation=0. In that case, O2aii3=1/9 (as an estimate of 

0+epsilon). 

4. if there is an interaction-indicating term between the co-

occurring terms, and separation>0, estimate O2aii4=(-

0.03k+0.9)/(1-(-0.03k+0.9) 

=(-0.03k+0.9)/(0.1+0.03k)), where k is the number of words 

between the co-occurring terms. However, if this is below 

0, set O2aii4=0. If separation=0 then O2aii4=17.  

5. Let prior odds Ophrase=0.68. 

6. Compute the product of all the O2aii_ that apply. 

7. Divide by Ophrase
n-1 where n is the number of O2aii_ that 

apply. 

 

b. If the co-occurrence is within a sentence but not a phrase: 

1. if the sentence has 1 co-occurrence, estimate 

O2b1=0.4/0.6=0.67 

2. if the sentence has >1 co-occurrences, estimate 

O2b2=0.32/0.68=0.47 

3. if there is an interaction-indicating term between the co-

occurring terms, and separation>0, estimate O2b3=(-

0.01k+0.6)/(1+0.01k-0.6) 

=(-0.01k+0.6)/(0.4+0.01k) where k is the number of words 

between the co-occurring terms. However, if this is below 

0, set O2b3=0). If separation=0, then O2b3=1/9 (this is an 

estimate of 0+epsilon). 

4. if there is not an interaction-indicating term between the 

co-occurring terms, and separation>0, estimate O2b4=(-
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0.0033k+0.2)/(0.8+0.0033k) 

=(-0.0033k+0.2)/(0.8+0.0033k) where k is the number of 

words between the co-occurring terms. However, if this is 

below 0, set O2b4=0). If separation=0, then O2b4=4/7. 

5. Let prior odds Osentencee=0.33. 

6. Compute the product of all the O2b_ that apply. 

7. Divide by Osentence
n-1 where n is the number of O2b_ that 

apply. 

 

3) To calculate the odds O(co-occurrence i is in an interaction description) from 

interaction-indicating term evidence, do the following. 

a. If the co-occurrence is within a phrase: 

i. If no interaction-indicating term is in the phrase, return null (i.e., 

do not return interaction-indicating term form odds) 

ii. If there are interaction-indicating terms in the phrase, for each 

term, find its odds O3aii based on the following Table 18. 

 

Table 18. Interaction-indicating term form odds in phrase 
 

Form Odds 

Noun 1.902 

Adj 0.75 

Present 2.818 

-ing 1.231 

past/perfect 1.867 

                                       

iii. Find the highest odds of all of the interaction-indicating terms and 

return that as the final odds. 

b. If the co-occurrence is within a sentence (but not a phrase): 

i.  If no interaction-indicating term is in the sentence, return null (i.e., 

do not return interaction-indicating term form odds). 
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ii. If there are interaction-indicating terms in the sentence, for each 

term, find its odds O3bii based on the following Table 19.  

 

Table 19. Interaction-indicating term form odds in sentence 

 

Form Odds 

Noun 1.469 

Adj 0.818 

Present 1.923 

-ing 1.029 

past/perfect 1.203 

 

iii. Find the highest odds of all of the interaction-indicating terms and 

return that as the final odds. 

 

4) Possible Odds normalization. Our corpora were made of sentences containing 

pairs of biomolecules that do interact in reality. Thus the odds obtained from 

analysis of these corpora may deviate from the real odds in MEDLINE because 

many pairs of biomolecules do not interact in reality. Therefore we created 

another corpus made of 300 sentences randomly chosen from MEDLINE (details 

are in Appendix V). These sentences contain at least two biomolecules different  

from those used in the corpora above.  

 

We get another odds from this corpus, called O300, and want to use this odds to 

normalize the above algorithm. The relative probability p300 is the probability that 

a sentence describes an interaction between two biomolecules in it, based on these 

300 sentences. Assuming it represents the whole of MEDLINE, then this corpus, 

which is independent from the location and form corpora, can be used to 

normalize odds and probabilities from steps 2) and 3) above.  

For example, the probability p that a sentence describes an interaction if it 

contains a noun form of an interaction-indicating term can be normalized as: 
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 p = pnoun * p300                   

Then we can reason that O = p / (1-p) implies that  

O = (pnoun * p300) /(1-( pnoun * p300)). 

Since p=O/(1+O), the last equation becomes 
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We found the values O300 = 0.723 and p300 = 0.419. 

 

In this way, we can normalize the results from the algorithm. There are two ways to 

normalize the odds. One is to normalize the prior odds only, used in step 2), because 

they represent the default odds that come from a background sentence set. Another 

way is to apply the normalization to each odds, in the hope that this makes each odds 

more likely to reflect the truth. However, there is a problem for the normalization. In 

section 2).a.i, the algorithm does not calculate the odds but instead gives the 

probability 0.1 directly when no interaction-indication term is in a phrase, therefore 

there is no place to apply O300 because here there are neither prior odds nor individual 

numerator odds (e.g. O2aii1.) For this case, we will use equation (1) to normalize final 

probability directly with p300.  

 

Overall, then, we have three candidate methods for calculating the final probability 

that a sentence describes an interaction between two given biomolecules. The first 

one is the original one of steps 1), 2), and 3). The second one is to normalize the prior 

odds in step 2) and the third one is to normalize all odds in steps 2) and 3) by O300. 

We call them ORI, PRI, and ALL. The results of each method will be used to choose 

the one that best matches the reality. Since the normalization of step 2).a.i is the same 

for the first and the second methods, we will not compare the results from this step of 

the first and second methods. 
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Note 1: if the numbers should change in the future, the software will need to be changed 

accordingly.  

 

Note 2: Semi-Naïve Evidence Combination. This method is scalable in the number of 

features, like Naïve Bayes, but has the advantage of making fewer independence 

assumptions. The most parsimonious formula for semi-naïve evidence combination is  

O(i|f1,...,fn)=O1...On/Op
n-1         (1) 

where O(i|f1,...,fn) is the odds that a passage describes an interaction if it has features 

f1,...,fn, Ok is the odds that a passage with feature k contains an interaction and Op is the 

prior odds (i.e. over all passages in the test set irrespective of their features) that a 

passage contains an interaction. Eq. (1) is in terms of odds, but these are easily converted 

to the more familiar probabilities by substituting O=p/(1-p); thus the odds of flipping a 

head are 1/1=1 (1 expected success per failure), while the odds of rolling a six are 1/5 

(one success expected per five failures). 

Example 1. As a simple case, consider a set of sentences, 4 with interactions and 4 

without. Feature f1 is associated with 4 sentences that describe interactions and 2 that 

don’t. The same holds for feature f2. Then O1=4/2=2=2/1, or an expectation of drawing 

two sentences with interactions (a hit) for each one without (a miss). Likewise for O2. 

O0=4/4=1, so by Eq. 1, O(i|f1,f2)=2·2/1=4=4/1, or odds of 4 to 1 that a sentence with both 

features describes an interaction. This corresponds to probability p(i|f1,f2)=4/5. 

 

Evaluating the Evidence Combination Algorithm 

We have devised three different evidence combination methods and wish to choose the 

best one. For each sentence in our corpus of sentences containing one of the 10 pairs of 

biomolecules, the three evidence combination methods were used to calculate the 

probability that the sentence describes an interaction between the biomolecule pair. We 

have 320 sentences so we have 320 probability estimates for each method. In creating the 

corpus, we manually judged whether the sentence describes the interaction, recording 1 if 
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so or 0 if not. Combining these 4 (3 automatic + 1 manual) scores, we get a table of 4 

scores for the corpus of 320 sentences (Appendix VI). For each automatic method’s 320 

probability scores, we did a linear regression fit to the manual data. Ideally, the number 

of sentences describing interactions divided by the total number of sentences should 

exactly equal the probability. Therefore, the ideal linear regression result should be the 

line Y=X. Let’s see the actual regression results using JMP software: 

 
Figure 5. The linear regression results using the “ALL” method. Note that the 320 manually 
determined data points, all with values of 0 or 1, often overlap. 
 

 
 

Fit of interaction By ALL 
 

Linear Fit
 

 
Linear Fit 
pmanual = 0.0288512 + 1.0660049*ALL 
 
 
 
Summary of Fit 
  
RSquare 0.071729
RSquare Adj 0.0688
Root Mean Square Error 0.479626
Mean of Response 0.561129
Observations (or Sum Wgts) 319
 
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 1 5.634864 5.63486 24.4950
Error 317 72.923129 0.23004 Prob > F
C. Total 318 78.557994 <.0001
 

Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  0.0288512 0.110849 0.26 0.7948
ALL  1.0660049 0.215387 4.95 <.0001

-0.1 
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Figure 6. The linear regression results using the “PRI” method. Note that the 320 manually 
determined data points, all with values of 0 or 1, often overlap. 
 
Fit of interaction By APPLYING ODDS ON PRI ONLY 
 

 
 

Linear Fit
 

 
Linear Fit 
pmanual = 0.0587154 + 0.5489084*PRI 
 
Summary of Fit 
  
RSquare 0.014581
RSquare Adj 0.011473
Root Mean Square Error 0.49417
Mean of Response 0.561129
Observations (or Sum Wgts) 319
 
 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 1 1.145470 1.14547 4.6906
Error 317 77.412524 0.24420 Prob > F
C. Total 318 78.557994 0.0311
 

Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  0.0587154 0.233621 0.25 0.8017
PRI  0.5489084 0.253445 2.17 0.0311
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Figure 7. The linear regression results using the “ORI” method. Note that the 320 manually 
determined data points, all with values of 0 or 1, often overlap. 
 
Fit of interaction By ORI without applying O300 

 
 

Linear Fit
 

 

Linear Fit 
pmanual = -0.220473 + 0.9057469*ORI 
 

Summary of Fit 
  
RSquare 0.048583
RSquare Adj 0.045581
Root Mean Square Error 0.485569
Mean of Response 0.561129
Observations (or Sum Wgts) 319
 
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 1 3.816549 3.81655 16.1871
Error 317 74.741445 0.23578 Prob > F
C. Total 318 78.557994 <.0001
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  -0.220473 0.196161 -1.12 0.2619
ORI  0.9057469 0.225124 4.02 <.0001

 
 

From these regression results, we can see that the ALL method achieved the best 

regression result:  

pmanual = 0.0288512 + 1.0660049* pALL                                   (2) 

which is nearest to the line Y=X. In other words, the ALL method best reflects the 

observed probability that a sentence describes an interaction. Therefore, the ALL method 

was used as the input to the final version of our sentence evaluation algorithm. 
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To make our final score more accurate, however, we need to adjust the ALL method to 

make the final score regression line become exactly Y=X. Because we wish to adjust pALL 

to equal pmanual, we defined 

padjusted=0.0288512 + 1.0660049* pALL                                   (3) 

This modification to the ALL method, called Adjusted All, for the corpus we used, gives 

results that regress to exactly the line Y=X. 

 

To test the validity of the padjusted calculation, we collected a test set of 123 sentences in 

which the 10 biomolecule pairs we used to create the corpus appear, but which were not 

already in the 320-sentence experimental set. For each test set sentence, PathBinder 

calculated padjusted. Whether it described an interaction between the two biomolecules of 

interest in it was also judged manually. In addition, to make the test more comprehensive, 

we collected another test set of sentences with values of padjusted of 0, 0.1±0.01, 0.2±0.02, 

0.3±0.03, 0.4±0.04, 0.5±0.05, 0.6±0.06, 0.7±0.07 and 0.739±0.07 (the padjusted 

computation gives results up to about 0.739). About 50 sentences for each value were 

collected. Some of them came from the 123 sentences noted above, and others were from 

search results using the pairs: ethanol & acetaldehyde, acetyl-CoA & NADH, dynamin & 

GTP, adenylate cyclase & ATP, and ATP & creatine. Overall, there were 600 sentences 

in this set, test set B. PathBinder computed padjusted for each of these sentences, and 

whether they really described the interaction also was judged manually and recorded as 0 

(no) or 1 (yes). Then we did a line regression as we did earlier. The regression results are  

In Figure 8.  

The regression line we get is Interaction = 0.0069822 + 0.9943749*score, or Y = 

0.0069822 + 0.9943749X, which is very close to the ideal line Y=X. We can compare this 

line (based on the Adjusted ALL method) with the line Y=X and the regression line of the 

ALL method (Figure 9). 
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Figure 8. The linear regression results for the test set of 600 sentences. Note that the manually 
determined data points, all with values of 0 or 1, often overlap. 
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Linear Fit 
Interaction = 0.0069822 + 0.9943749 score 
 
Summary of Fit 
  
RSquare 0.138873
RSquare Adj 0.137429
Root Mean Square Error 0.439626
Mean of Response 0.337793
Observations (or Sum Wgts) 598
 
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 1 18.57653 18.5765 96.1166
Error 596 115.18936 0.1933 Prob > F
C. Total 597 133.76589 <.0001
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  0.0069822 0.038233 0.18 0.8552
score  0.9943749 0.101426 9.80 <.0001

 

From Figure 9, we can see the Adjusted All algorithm generates a regression line from 

the test set very close to the ideal result Y=X. In fact, they are almost identical. On the 

other hand, before adjusting to Y=X, the ALL method is quite distinct from the Y=X line. 

After adjustment, therefore, the algorithm gives very good results. Thus the PathBinder 

system can give nearly ideal probabilities for sentences describing interactions between 

biomolecule pairs. 
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Figure 9. The Comparison among Y=X, ALL method regression line, and Adjusted ALL method 
regression line. 
 

 

 

2.2.3 Applying the results of section 2.2.2.2 to identify interactions between 

biomolecules and create interaction network 

 
2.2.3.1 Methods for identifying interactions between two biomolecules 

 
For each candidate sentence, we can assess its probability of describing an interaction. 

This enables assessing the probability of interaction between two biomolecules by 

combining the evidence provided by multiple sentences containing the same co-

occurrence of biomolecules. To do this, a method for combining the quality and quantity 

of sentences containing a given pair of biomolecules is needed. The basic idea is that the 

more sentences describe the interaction between the two biomolecules well, the higher 

the probability the two biomolecules really interact. I will use different methods and then 

evaluate which one provides the best results.  
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Here is the comprehensive method of combining evidence. Let p be the probability that a 

sentence describes an interaction. Then q = 1 – p is the probability that the sentence does 

not describe an interaction. Given n such independent sentences and assume the 

probability p that each sentence describes an interaction is same, qn is the probability that 

none of them describe an interaction. So the probability that there is an interaction is 

described is 1 – qn. Therefore, 

p(there is an interaction described between these two entities) 

    = 1 – qn 

    = 1 – (1 – p)n                                                       (4) 

Based on this formula, we can compute the probability that there is an interaction for a 

pair of biological entities from n relevant sentences. In the more typical case of n 

sentences each with its own value pi for the probability that it describes an interaction, the 

formula generalizes to: given n independent sentences where the two entities appear, 

p(there is an interaction described between these two entities)  

= 1 – (1 – p1)(1 – p2)(1 – p3)…(1 – pn)                                       (5) 

 

Scientific knowledge is developing continuously. New theories and discoveries appear 

daily. Some new interactions may be mentioned only in the most recent publications, 

which means the number of publications describing these interactions is limited 

compared to more typical interactions. Thus, particularly for a recent discovery, few 

sentences may not be evidence against interaction. Therefore, we also assessed the ability 

of two variant methods for identifying the probability of an interaction between two 

biomolecules. These are as follows:  

 Use the average of the scores of the top 5 sentences (those having the highest 

score for the probability of describing an interaction between the two 

biomolecules). 

 Use the average of the scores of the top 2 sentences. 

These two methods are called “Best 2” and “Best 5” respectively. The method of formula 

(1) is called the “All” method here. If a biomolecule pair has less than 2 or 5 sentences 

where they co-occur, probability 0 is used for missing sentences to reach 2 or 5 when 
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calculating the average probability scores. The number of sentences does not influence 

the computation in these cases. 

 

2.2.3.2 Interaction network creation 

 

As just described, for any pair of biomolecules, we can estimate a probability of 

interaction. But how do we find or enumerate those biomolecule candidates? We will use 

an existing database about genome-wide plant mRNA, protein, and metabolite profiling 

data, MetNetDB, in which there is a biomolecule entity table. The table currently 

contains gene, protein, and biochemical entities focusing especially on Arabidopsis and 

soy. Each entity in the table is a biomolecule candidate. A direct method for getting 

biomolecular pairs is to select any two biomolecules in the table. Then for each such pair, 

the sentences where they co-occur can be collected and analyzed to estimate the 

probability that they are described as interacting.  

 

Using this method, we could get all pairs of biomolecules having a high probability of 

interaction. All these interacting pairs would form a biomolecular interaction graph or 

network. The biomolecules would be the vertices in the network, and if two biomolecules 

are found to interact, there will be an edge between these two biomolecules (vertices). 

Therefore choosing biomolecules and then biomolecule pairs from a database, we can 

create a corresponding interaction network. The goal here is to create the interaction 

network from MetNetDB. It can be one for Arabidopsis, soybean, both, or future new 

species.  

 

If the number of candidates were small, enumerating pairs for them would be a 

reasonable job. However, the entity table in MetNetDB has more than 2*106 records so 

that the enumeration of pairs would be more than 100 billion. If each pair needs to be 

evaluated through the whole literature, it would not be affordable. However, not all pairs 

co-occur in the literature, and currently they are only in the tens of millions of sentences 

in MEDLINE. So, instead of enumerating biomolecule pairs from the entity table 

directly, the pairs will come from parsing sentences. Sentences in MEDLINE will be 



www.manaraa.com

61 

  

scanned one by one, and all biomolecular pairs in both a sentence and the entity table will 

be extracted to enumerate the biomolecular pairs. In other words, each biomolecular pair 

is extracted from sentences that contain co-occurring biomolecules, so those 

biomolecules in the entity table that do not occur in any sentences or co-occur with other 

biomolecules not in the table will not be counted. This will save a lot of time.  

 

For the comprehensive method, 1 – pi is stored in the PathBinder database for each 

sentence i and for each pair of biomolecules co-occurring in the sentence i. Finally, eq. 

(5) is applied to the set of sentences containing a given biomolecular pair. The result is 

the probability of interaction between the biomolecule pair as evaluated from the 

literature. This comprehensive method is currently employed in PathBinder as a demo. 

The whole procedure is shown in Figure 10.  

 

For the top part methods, which only use the top-scoring sentences, we will still scan the 

sentences one by one. But a cache will be maintained for each extracted biomolecule pair 

when scanning all sentences. Each biomolecule pair’s cache stores up to five top scoring 

sentences for the second method and up to two sentences for the third method. After 

scanning the whole literature, the average score of the final top five or two sentences will 

be computed and will become the final score for the interaction between the biomolecule 

pair.  

The overall system structure is shown in Figure 11. There are two main parts. 

1. Extracting interactions.  

a. The system examines each sentence in MEDLINE for keywords 

(biomolecules, IITs, & cellular locations) stored in MetNetDB, tags them and 

stores tagged sentences into PathBinderDB.  

b. When scanning each sentence, the system combines the interaction evidence 

for each biomolecule pair inside the sentence using the formula (1), and 

accumulates those scores with different methods when meeting same pair in 

the future. We have two tables about biomolecules, one for each appearance in 

citations and one for entities recognized by biologists but which may not 

appear in citations. The relationship between them is n to m. Some terms 
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appearing in different citations may be a same biomolecule. When 

accumulating the scores, we first calculate the score for the appeared term 

pari, find the appeared term’s relative entity record, and then accumulate the 

score for the actual biomolecule pair.  

 

Figure 10. The interaction score computation procedure for the comprehensive method. (A sentence 
score for a biomolecular pair is defined as the probability that the sentence describes an interaction 
between these two biomolecules.) 
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sentences in which the two biomolecules appear. It calculates a probability score 

for each returned sentence, ranks them based on the score, and then shows them 

to the user. On the other hand, if a user provides just one biomolecule, 

PathBinder returns all biomolecules potentially interacting with it. 

 
Figure 11. PathBinder system structure 

 

 

 

 
2.2.3.3 Assessment of the interaction network 

As mentioned in the method section, we can combine evidence from multiple sentences 

to evaluate the probability score that a pair of biomolecules interacts (see equation (1) 
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After scanning each sentence of MEDLINE and synonym processing, we collected 

1,981,796 biomolecule co-occurrences from MEDLINE and then 7,706,968 pairs of 
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2008). The key information retrieval measures of precision and recall were used to 

compare the three methods for combining evidence provided by multiple sentences. To 
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sentences for each pair was evaluated by the three methods (All, Best 5 and Best 2), and 

the resulting computationally estimated probabilities of interaction were recorded for 

each pair. Meanwhile, these 400 pairs were manually analyzed to see whether they do in 

fact interact. One hundred eight of them did interact. The overall precision was thus 

108/400=0.27 for this random set. More importantly, we calculated the precisions for 7 

subsets of the 400 pairs meeting 7 different thresholds for interaction probability. This 

was done separately for each of the three methods (making 7*3=21 subsets). Thus each 

subset was associated with a threshold and a calculation method, and with a recall that 

was the fraction of the 108 interacting pairs meeting the threshold using the calculation 

method. For each set, the precision and recall are defined as following: 

 

Precision = Number of pairs interacting having the score over the threshold in the set/ 

    Number of pairs in the set  

 

Recall = Number of pairs interacting having the score over the threshold in the set/ 

Number of pairs having the score over the threshold in the set 

The overall recall for the whole set is necessarily 1. The detail results are shown in Table 

20 and Figure 12. 

Table 20. The recalls and precisions of different interaction network creation methods in different 
score threshold 
 

All Best 2 Best 5 

Score Recall Precision Score Recall Precision Score Recall Precision 

1.00 0.15 0.57 0.60 0.18 0.68 0.58 0.16 0.61
0.95 0.58 0.55 0.55 0.47 0.64 0.53 0.35 0.62
0.90 0.65 0.53 0.50 0.57 0.58 0.48 0.47 0.61
0.85 0.69 0.51 0.45 0.69 0.55 0.43 0.57 0.61
0.80 0.71 0.50 0.40 0.77 0.50 0.38 0.61 0.55
0.75 0.74 0.48 0.35 0.79 0.45 0.33 0.64 0.52
0.70 0.78 0.46 0.30 0.81 0.40 0.28 0.67 0.50
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Figure 12. Recall and precision comparison among three methods 
 

 

Some other aspects of Figure 12 are worth considering further. For the “All” method, the 

leftmost data point occurs for a computed probability of 1 that a co-occurrence interacts. 

Such a high value can happen when there are a lot of sentences providing evidence. 

Combining that evidence using equation (5) leads to score values that are effectively 1 

(for example, the co-occurrence of “bilirubin” and “cytochrome P450” including their 

synonyms was computed to have a score of 1-10-11). We considered any score over 1-10-6
 

to be effective 1. This occurred for 342,492 biomolecule pairs (for MEDLINE collection 

till October 2008). However, because the “Best 5” and “Best 2” methods only look at 

average scores of sentences, scores tend to be lower for these methods than for the “All” 

method. Thus, for these methods, it is possible to set score thresholds that are more 

selective such that the number of qualifying pairs is smaller than 342,492.  

 

Another aspect of Figure 12 is that the curves are not always monotonic. For example, 
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(0.16, 0.61) is based on the 28 pairs meeting or exceeding a threshold score value of 0.58, 

computed by the “Best 5” method. This was the most selective threshold used to generate 

the curve. Yet the 62 pairs qualified by a lower threshold of 0.53 actually had a higher 

precision, giving point (0.35, 0.63) in Figure 12. One possible reason is noise from the 

limited data. A less likely possibility is that “Best 5” actually does produce this effect for 

some unknown reason.  

 

Recall and precision are often combined to get a single, composite measure of 

information retrieval quality using the F-measure, or effectiveness of an information 

retrieval method: 

F = 2*(recall*precision)/(recall+precision).            

Figure 13 and Table 21 shows the effectiveness for the three methods as a function of the 

size of set meeting a given threshold with the percentage of pairs of different thresholds 

in our final pairs set  

 
Table 21. The effectiveness of different interaction network creation methods in different score 
threshold with data of the percentage of pairs of different thresholds in all pairs set.  
 

All Best 2 Best 5 

Score Effectiveness Percentage Score Effectiveness Percentage Score Effectiveness Percentage 

1.00 0.24 4.44% 0.60 0.28 4.68% 0.58 0.25 4.60%
0.95 0.57 25.80% 0.55 0.54 16.18% 0.53 0.45 10.91%
0.90 0.59 30.32% 0.50 0.58 24.17% 0.48 0.53 15.78%
0.85 0.59 34.00% 0.45 0.61 32.47% 0.43 0.59 21.55%
0.80 0.59 37.29% 0.40 0.60 41.08% 0.38 0.58 26.77%
0.75 0.58 40.52% 0.35 0.57 48.65% 0.33 0.58 31.04%
0.70 0.58 43.93% 0.30 0.54 53.69% 0.28 0.57 34.65%
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Figure 13. Effectiveness comparison among three methods 
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For F value, the “Best 2”method gave the highest peak value, for a threshold that 

qualifies 137 pairs. If we apply this threshold score to the full result interaction pair graph, 

there are 1,646,337 pairs that it qualifies. Therefore, if effectiveness is the key point, the 

“Best 2” method should be used. Otherwise, Figure 4 would be appropriate to use. 

 

Our technique has been applied in the PathBinder System, which also provides a query 

gateway to users. If a user provides a biomolecule, PathBinder can find other 

biomolecules potentially interacting with it. Users can choose a biomolecule pair as a 

query for sentences describing interactions, as illustrated in Figure 14. Users also can 

attach more query conditions, such as cellular locations (e.g., nucleus, mitochondrion, 

etc.), categories of IITs appearing with the co-occurring biomolecule names (e.g. 

association, modification, etc.), specific IITs appearing with a co-occurrence (e.g. bind, 

increase, etc.) and Linnaean taxonomic categories. All these data are obtained when 

processing MEDLINE and are already recorded in the database. When PathBinder gets a 

query, it will search for all sentences satisfying the query and display them in a new 
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window as in Figure 15. It can rank the result sentences by PMID or by their estimated 

probability of describing an interaction between the query biomolecule pair. Users can 

click the PMID to read the citation containing the sentence directly on the PUBMED 

Website.  

 

2.2.3.4 Discussion of the interaction network result 

As explained earlier, we calculate a rather precise probability estimate that a sentence 

describes an interaction between a given biomolecule pair. However, this precision can 

be misleading. There are some sentences that PathBinder mistakenly gives high scores to 

and some that get too low a score. For overly high scores, a typical problem is that an IIT 

describes the interaction of one biomolecule in the given pair with another biomolecule 

not in the pair, but the non-syntactic approach of PathBinder mistakenly concludes the 

interaction is between the co-occurrence of interest. For example, consider the sentence 

 
Figure 14. PathBinder Main Interface 
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Figure 15. PathBinder Search Results Windowbiomolecules pair with other 
 

 
 

Sodium dichloroacetate increased glucose oxidation and pyruvate oxidation in hearts 

from fed normal or alloxan-diabetic rats perfused with glucose and insulin. (McAllister 

et al., 1973) 

The term “oxidation” is between the biomolecules “glucose” and “pyruvate” but it does 

not describe an interaction between them. PathBinder, however, will give a high score to 

this sentence anyway. Analyzing the syntactic structure of the sentence, as with full 

parsing, would help solve this problem, but is computationally more expensive. 

For scores that are too low, a typical problem is that some IITs are not recognized. An 

unusual IIT might not be stored in our database and so would not be recognized. For 

example, consider the following sentence. 

GTP-dependent twisting of dynamin implicates constriction and tension in membrane 

fission. (Roux et al., 2006) 
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If we try to find an interaction between GTP and dynamin, there is no obvious IIT 

describing their interaction. But the word “dependent” describes a relation between 

“GTP” and “twisting of dynamin,” so there is indeed an interaction described. However, 

neither “dependent” nor “twist” are known to the system as IITs and so this sentence gets 

a low score.  

 

Another problem is due to biomolecules appearing very often in MEDLINE. The chance 

that two of them co-occur in one sentence can be correspondingly elevated even if they 

do not interact. The sentence they co-occur in may not get a high estimated probability of 

describing an interaction. But when we construct the interaction network from 

MEDLINE based on thousands of sentences, the chance some pairs get listed with a high 

probability of interaction is high. An example is “ATP” and “starch.” A different problem 

in network construction is posed by biomolecules that look like common words in 

English. For example, “no” and the abbreviation of nitrous oxide have the same spelling 

and “no” appears very often in MEDLINE. A naïve analysis will find that nitrous oxide 

has interactions with thousands of biomolecules. In addition, some entities tend to creep 

into dictionaries of biomolecules that are not really biomolecules, like “resistance.” Such 

terms tend to then become members of invalid “interactions.” In fact, if we eliminate the 

effects of words like “no” and “resistance,” the precision of our results increases 

significantly, as shown in Table 22. The effectiveness also was improved with improved 

precision, as shown in Table 23 and Figure 16. Note that, because no new interacting 

pairs appear, the recall keeps same.  

 

Our precision results are higher than for some other interaction extraction applications. 

For example, for a direct co-occurrence counting method, Albert et al. (2003) obtained a 

precision of about 35%. Our highest precision 95% is among the best results for 

extracting interactions so far. NLP methods in principle should be capable of obtaining 

close to 100% precision and recall. Avoiding NLP, however, our system saves 

considerable time. Our approach could be improved more by investigating and using 

empirics for more text features. Finally, we note that even when full NLP becomes 
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available at some future time, easily computed text empirics will still have potential value 

as an ancillary evidence source that could speed up NLP-based analyses. 

 
Table 22. The updated precision of different interaction network creation methods  
 

All Best 2 Best 5 

Score 
Threshold 

Precision Score 
Threshold 

Precision Score 
Threshold 

Precision 

1 0.84 0.6 0.95 0.58 0.89 
0.95 0.74 0.55 0.84 0.53 0.90 
0.9 0.71 0.5 0.8 0.48 0.86 
0.85 0.67 0.45 0.73 0.43 0.83 
0.8 0.65 0.4 0.64 0.38 0.74 
0.75 0.63 0.35 0.57 0.33 0.69 
0.7 0.6 0.3 0.51 0.28 0.65 

 
 
Table 23. The updated effectiveness of different interaction network creation methods in different 
score threshold with data of the percentage of pairs of different thresholds in all pairs set.  
 

All Best 2 Best 5 

Score Effectiveness Percentage Score Effectiveness Percentage Score Effectiveness Percentage 

1.00 0.25 4.44% 0.60 0.30 4.68% 0.58 0.27 4.60%
0.95 0.65 25.80% 0.55 0.60 16.18% 0.53 0.51 10.91%
0.90 0.68 30.32% 0.50 0.67 24.17% 0.48 0.61 15.78%
0.85 0.68 34.00% 0.45 0.71 32.47% 0.43 0.68 21.55%
0.80 0.68 37.29% 0.40 0.70 41.08% 0.38 0.67 26.77%
0.75 0.68 40.52% 0.35 0.66 48.65% 0.33 0.66 31.04%
0.70 0.68 43.93% 0.30 0.63 53.69% 0.28 0.66 34.65%

 

2.2.4 Interaction-indicating terms extraction based on text empirics  

As mentioned before, there is a lot of research about automatic interaction extraction. 

However, these works tend to focus on whether an interaction exists between two 

biomolecules than on the type of interaction. The type of interaction is important and also 

should be extracted. The co-occurrence and template matching methods may yield the 

type of interaction if an interaction triple like “A activates B” is extracted (Yakushiji et 

al., 2001; Ono et al. 2001; Domedel-Puig et al., 2005; Fundel et al., 2007). There is some 

research on classifying interactions within several predefined groups. Rosario et at. (2005) 

use an existing database of biomolecular interactions to train several probabilistic 

graphical models to classify sentences into several interaction groups. More research is 

about extract gene-disease relationship types. Theodosiou et al. (2005) used linear 

discriminant analysis to assign a gene a function for a disease from text. Bundschus et al. 
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(2007) also used conditional random fields, another probabilistic graphical model, to 

classify a sentence into several broad gene-disease interaction groups. Rindflesch et al. 

(2003) constructed a gene-disease relationship vocabulary and matched sentences to 

predefined rules to find relationship words and to classify them into groups. Yen et al. 

(2006) extracted gene-disease relationship directly by applying a bigram probabilities 

method and choosing those words with higher probabilities.  

 

Figure 16. Updated effectiveness comparison among three methods 
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Here we introduce a method to automatically extract from literature interaction-indicating 

terms (IITs) that connect biomolecules. Similar to the method introduced above to extract 

interactions, we first sought empirical rules implicit in the biomedical texts and then 

applied this knowledge to design an algorithm to evaluate which IIT is most likely to 

correctly describe the interaction between a given pair of biomolecules. However, besides 

empirical rules based Bayesian method, our IIT extraction method also involves 

information retrieval theory to find the best IITs for two biomolecules based on all 
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MEDLINE collections. In contrast to the classification task, we instead extract actual 

interaction-indicating words rather than interaction categories. We also find the 

interaction description between two biomolecules based on multiple sentences identified 

within an entire corpus, rather than on a single sentence or other text unit. Our software, 

PathBinder, applies this method and provides query functions. Users not only can search 

for sentences describing interactions from MEDLINE by giving a pair of biomolecules 

based on the algorithm introduced in 3.2.2, but also a list of IITs associated with the 

given biomolecular pair and ranked based on their probabilities of properly describing the 

interaction. 

 

2.2.4.1 Extraction method 

 
To investigate automatic extraction of the correct IITs (inter-action-indicating terms) for 

biomolecule pairs of interest, we analyzed text units consisting of individual sentences 

(Ding et al. 2002). Titles were counted as sentences. For example, consider the following 

sentences. 

 

Measurement of the reversibility of ATP binding to myosin in calcium-activated skinned 

fibers from rabbit skeletal muscle. (Bowater et al., 1989) 

 

A parallel pathway model of regulation simulated the effects of Ca(2+) and ATP-free 

myosin binding on both equilibrium binding of myosin-nucleotide complexes to actin 

and the general features of ATPase activity. (Gafurov et al., 2004) 

 

In rigor (in the absence of ATP, when all the myosin heads are rigidly bound to the thin 

filament), a slight decay was observed in the first few microseconds, followed by no 

change in the anisotropy. (Ramachandran et al., 1999) 

 

These sentences contain possible interactions between ATP and myosin. These sentences 

also contain several verbs or other interaction-indicating terms that might describe the 

interaction between ATP and myosin. Their canonical forms are: “bind,” “activate,” 
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“regulate,” “complex,” and “change.” “Bind” appears more frequently than the others. 

Thus we might hypothesize “bind” as the interaction between ATP and myosin (careful 

reading shows this is indeed the case). 

 

Note the distinction between an IIT that describes an interaction, and an IIT that 

describes an interaction in a given sentence. The latter refers to what a particular sentence 

says, while the former refers to a general fact about two biomolecules. Sentence 3 for 

example does not describe the interaction between ATP and myosin as “bind,” even 

though the interaction is in fact one of binding. 

 

Different text properties may play different roles in determining the probability that a 

particular IIT describes a biomolecular pair. Thus, we aimed to analyze sentences from 

the literature to manually identify useful properties that could help automatically extract 

correct IITs for a given biomolecular pair. 

 

We used the same corpus used for interaction extraction introduced above. But other than 

focus on whether an interaction is described, we investigated manually the following 

features about the text and their relationship to the probability that an IIT is the correct 

IIT between two given biomolecules. 

a) Whether a given IIT correctly describes the interaction between two given 

biomolecules. 

b) The position of that IIT relative to the two biomolecules, including: 

i) whether the tri-occurrence of two biomolecules and the IIT is within a 

phrase or not, 

ii) how many words are between the biomolecules and the IIT, 

iii) whether the verb appears between the two molecules or somewhere else,          

and 

iv) the frequency of the verb’s appearance in the sentence. 

c) The differences among IITs properties like syntactic forms and semantic 

categories. 
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Each feature about an IIT in each sentence was recorded along with whether the IIT is the 

correct IIT between the pair of biomolecules specified by the query judged by biological 

experts. Their overall IIT distribution over sentences of ten biomolecules pairs is in Table 

24.  

 
Table 24. IIT distribution over biomolecules pairs 
 

Biomolecules pair a b c d e f g h i k Total 
Total IITs appearing 113 87 112 65 79 110 93 24 20 67 770

Correct IITs for each pair 61 42 64 31 35 39 60 0 5 1 338
IITs describing interaction in sentences 33 31 30 20 23 15 25 0 4 1 182

 

In these 320 sentences, there are 770 times of IIT appearance and the correct IITs appear 

338 times. The probability is less then 50%. We also differentiated all IIT appearances in 

two groups based on their position relative to the biomolecules as mentioned in a.i and 

a.iii above. The result is in Table 25. If an IIT appears between the two biomolecules, it 

has a higher probability to be the correct IIT describing interaction between the two 

biomolecules than not appearing between (50% vs. 39%) and if an IIT appears with the 

biomolecules pair together (tri-occur) in a phrase, it has a higher probability to be the 

correct IIT describing interaction between the two biomolecules than not appearing in a 

same phrase with the biomolecules than otherwise (50% vs. 37%).  

 
Table 25. IIT position properties results 
 
 Total Between 

biomolecules 

Not between 

biomolecules 

Tri-occurring 

in a phrase 

Tri-occurring 

not in a phrase 

Total IIT 770 327 443 417 353 

Correct IIT 338 164 174 209 129 

percentage 44% 50% 39% 50% 37% 

 

For the IIT properties themselves, we investigated the possibility that IIT form (noun, 

adjective, adverb, present, present continuous and past/perfect) and semantic category 

(association, modification, negative regulation, positive regulation, transportation, 

transcription, create, and vacuous) can be used as evidence to differentiate correct IITs 

from other IITs. “Vacuous” was used as the category when an IIT could not be clearly 

placed in another category (affected, influenced, etc.). The past and perfect forms of IITs 
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are sometimes the same. The frequency of the perfect form is low, so we did not 

distinguish between them. Note that some IITs have the same spelling for both the noun 

and present tense forms. We can manually differentiate them but to use the results in 

automatic methods would require POS tagging. The results are shown in Table 26. We 

found that the correct IITs in the sentence distributes evenly among different pairs and 

among different forms, but not among different categories. The different IIT forms are 

significant to differentiate IITs for their probability to be correct IITs (p<0.05, F test). 

The IIT semantic categories in differentiating IITs with respect to probability of being 

correct IIT are closely related to the query biomolecules pair (ppair<0.05, pcategory>0.05, 

two combined F tests), which means IIT category may not be appropriate to help extract 

correct IIT. 

 
Table 26. Data on likelihoods that IITs are correct, by interaction-indicating term form and category. 
 

Forms 
# (%) 

correct 
IITs 

All IITs 

noun 190/54% 353 
adj 10/43% 23 
adv 0/0% 0 

present 23/25% 92 
-ing 42/52% 81 

past/perfect 67/32% 210 

Categories   

association 82/74% 111 
modification 110/71% 154 

negative 
regulation 

1/1% 104 

positive 
regulation 

5/4% 132 

transportation 1/4% 23 
transcription 0/0％ 7 

create 101/78％ 130 
vacuous 39/37％ 105 

 

We also investigated the influence of the distance between an IIT and the biomolecules 

pair. There are two distance varieties: one is the number of words between the IIT and the 

nearest biomolecule in the pair and another is the number of words between the IIT and 

another biomolecule in the pair (other than the biomolecule closer to the IIT). The sample 

data is in Table 27 and Table 28. The detailed information for each pair and each distance 

can be found in Appendix VII. To better understand the properties of the nearest 
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biomolecule, we analyzed sentences with distances from the IIT to the nearest 

biomolecule of 38 intervening words or less. Similarly, to better understand the other 

biomolecule in the pair, we analyzed sentences where this distance was also 38 or less. 

Tables 27 and 28 appear to corroborate the hypothesis that the likelihood that an IIT is 

correct decreases as the distances become larger. Thus we hypothesized that the 

relationship between the probability and the distance can be represented by this equation:  

     p(an IIT is the correct IIT) = cedisbeb tan*
0

1*                                (6) 

where b0 and b1 are determined from regression analyses on the data synopsized in Tables 

25 and 26. 

 
Table 27. Data on likelihoods that IITs are correct, by the different distances to the nearest 
biomolecule in the pair. 
 

Distance to 
nearest 

biomolecule 

#(%) 
correct 

IITs 
All IITs 

0 17/89% 19 
1 23/70% 33 
2 42/67% 63 
3 42/65% 65 
4 29/37% 78 
5 26/33% 80 
6 22/41% 54 
… … … 
38 0/0% 1 

 

Table 28. Data on likelihoods that IITs are correct, by the different nearest distances to the 
biomolecule other than the one in the pair closer to the IIT. 

 
Distance to 

nearest 
biomolecule 

#(%) 
correct 

IITs 
All IITs 

0 191/63% 302 
1 76/45% 168 
2 38/38% 99 
3 42/40% 106 
4 21/29% 73 
5 17/30% 57 
6 4/11% 38 
… … … 
38 0/0% 1 
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We did the regression analysis based on the data whether an IIT is the correct IIT related 

the two distances. The regression analysis is implemented in JMP software based on data 

in Tables 27 and 28 and also based on pure 1/0 (whether an IIT is the correct IIT) for 

different distance. The results are shown in Figures 17 and 18 for farther distances and 

Figure 19 and 20 for closer distances. Note that the y axis in the graph is the correct IIT 

probability with value only 0 or 1 because it is for each appearance of an IIT which is 

correct IIT or not in Figures 17 and 19. In fact they match the regression results based on 

the calculated percentage data above in Tables 27 and 28 very well in Figures 18 and 20. 

We chose the result regression curves in Figures 17 and 19 with smaller errors and 

relative relationship equations are equation (7) for the farther distance and (8) for the 

closer distance. 

 
Figure 17. Regression curve for the relationship between the likelihood that an IIT is correct and the 
distance of the IIT to the other biomolecule in the pair (not the nearest). Each sentence is a separate 
data point in the graph, but many data points are superposed.  
 

 
Parameter Estimate ApproxStdErr Lower CL Upper CL 
b0 0.605186767 0.03461204 0.5339632 0.68251498 
b1 -0.04073855 0.00655469 -0.0563802 -0.0268338 
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Figure 18. Regression curve for the relationship between the likelihood that an IIT is correct and the 
distance of the IIT to the other biomolecule in the pair (not the nearest). Each data point represents 
the set of sentences for a given distance. 
 

 
 
Parameter Estimate ApproxStdErr Lower CL Upper CL 
b0 0.608727371 0.04712929 0.51078631 0.71874031 
b1 -0.041680757 0.00893949 -0.0641114 -0.0226901 
 

Figure 19. Regression curve for the relationship between the likelihood that an IIT is correct and the 
distance of the IIT to the nearest biomolecule. Each sentence is a separate data point in the graph, 
but many data points are superposed.  

 

 
Parameter Estimate ApproxStdErr Lower CL Upper CL 
b0 0.5882890188 0.02323824 0.54002426 0.63737176 
b1 -0.14058278 0.01832478 -0.1885659 -0.1005924 
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Figure 20. Regression curve about the relationship between the likelihood that IITs are correct and 
the distance of the IIT to the nearest biomolecule. Each data point represents the set of sentences for 
a given distance. 

 

 

 

 

 

      p(an IIT is the correct IIT) = cedise tan*04.0*0.605                           (7) 

      p(an IIT is the correct IIT) = cedise tan*14.0*0.588                           (8) 

 

Combining evidence and identifying the kind of interaction between two 

biomolecules 

 

We combined the evidence contributed by the properties above to give a weight that each 

sentence contributes about the probability that an IIT is the correct IIT as the interaction 

extraction method introduced above by the same method used for interaction extraction 

(3.2.2.2). This way, for each IIT in a given sentence, we can calculate the chance that it 

correctly describes the interaction of the biomolecule pair of interest. To best determine 

the interaction between two biomolecules, however, requires looking at sets of sentences, 

rather than one sentence in isolation. With sets, in attempting to extract the type of 

interaction between two biomolecules, we can combine evidence provided by multiple 

sentences in the literature containing a given IIT in association with a biomolecular pair 

of interest.  

Parameter Estimate ApproxStdErr Lower CL Upper CL 
b0 0.5869431534 0.03088942 0.40161 0.77228 
b1 -0.138346172 0.02414969 -0.2832 0.00655 
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If an IIT co-appears with the two biomolecules more frequently, this IIT might be 

expected to have a correspondingly higher probability of being a correct IIT for the 

biomolecular pair compared to other IITs. Confounding this, however, is the fact that the 

background frequencies with which different IITs appear in the literature differ. Some 

commonly appearing IITs may appear more frequently in association with a given 

biomolecule pair than the correct interaction-indicating term for that pair merely because 

they are so common overall. Thus misleading results could occur if we are not careful.  

To correct for varied background frequencies of IITs, we applied the tf-idf weighting 

system, which is often used in information retrieval. The hypothesis for this phase of the 

study was at follows. 

 

HYPOTHESIS: Using the properties of tri-occurrences discussed in Section 1.1, 

interaction-indicating terms characterizing the interaction between a given pair of 

interacting biomolecules may be extracted using a method that: 

1. is an adaption of the tf-idf method; 

2. makes intuitive sense for the same reasons as the tf-idf method; and  

3. works. 

The remainder of this subsection addresses this hypothesis. The tf-idf method is 

explained in most information retrieval textbooks. The term frequency (tf) of a word i in a 

document is: 

 



k k

i
i n

n
tf                                                             (9)                                                                             

where ni is the number of occurrences of the term i in the given text, and the denominator 

is the number of occurrences of all terms in the text.  

The inverse document frequency (idf) measures the ability of a term to separate relevant 

from irrelevant texts: 

|}:{|

||
log

did

D
idfi 

                                                      (10)                                                          

where |D| is the total number of documents or other texts in a corpus, and the 

denominator is the number of texts in which term i appears. 
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Thus a high value of tf*idf occurs if the term has a high frequency in a given document 

but a low frequency in the whole corpus, suggesting that if the term is a search term, it is 

correspondingly powerful for discriminating between relevant and non-relevant texts.  

The tf-idf method can be applied to the tasks of finding the IIT(s) that are most relevant to 

a given biomolecule pair, and hypothesizing that these IIT(s) correctly describe the 

interaction.  

 

Adaptation 1 

Recall that tf-idf weighting often is used in information retrieval to score and rank a 

document's relevance to a given user query, when the query is composed of several key 

words. Here we want to retrieve the right interaction-indicating words for a query 

consisting of a biomolecule pair. We can look at the specific biomolecule pair as a query, 

and all interaction-indicating term candidates as documents. To do this, we can look at 

the set of all sentences in our corpus for which a specific interaction-indicating term 

appears, as a “document,” and then an occurrence of a word in a document becomes an 

occurrence of a biomolecule pair in one of the sentences in which a specific interaction-

indicating term appears. 

Then the calculation of tf becomes: 




k k

i
i s

s
tf                                                             (11) 

Where si is the number of sentences where the specific pair of biomolecules appears with 

an interaction-indicating term, and sk is the number of sentences where any pair of 

biomolecules appears with the interaction-indicating term. 

The calculation of idf becomes: 

}:{
log

vbv

V
idf

i
i 
                                                      (12) 

Where v is the number of different “documents” (each consisting of all sentences 

containing a particular interaction-indicating term) that a specific biomolecule pair bi 

appears in, and V is the total number of different interaction-indicating terms in our 
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corpus. Then combining eq. (11) and eq. (12) we can use this tf-idf strategy to rank 

interaction-indicating terms for a given biomolecule pair.  

However, eq. (11) is not easy to calculate. ∑ksk includes all pairs occurring with 

interaction-indicating term i, and the pairs could include millions of possible 

combinations of biomolecules. Calculating each interaction term’s set of sentences 

equates to scanning the whole corpus.  

 

To be simpler, we can assume that ∑ksk = ρs, where S is the number of sentences in which 

the interaction-indicating term of interest appears, and ρ is the proportion of those 

containing some biomolecule pair. Because we need to compare tf-idf among different 

interaction-indicating terms, if we assume ρ is the same for all interaction-indicating 

terms, we can modify tf to mtf: 

S

s
mtf i

i  .                                                             (13) 

Using this we can simplify the calculation and still be able to compare interaction-

indicating terms. However the assumption that ρ is the same for all interaction-indicating 

terms is only an assumption. We need to establish its validity to be confident. 

 

Adaptation II 

Recall that tf-idf is used to evaluate how important a word is to a document in a collection 

or corpus. In the same way, we can evaluate how important an interaction-indicating term 

is to a biomolecule pair. Because an interaction-indicating term cannot appear literally in 

a biomolecule pair, let’s instead look at the sentences containing a given biomolecule pair 

as the “document” and the interaction-indicating terms as the terms of the tf-idf definition. 

 

From the text empirics discussion earlier, we know that each occurrence of an IIT can be 

given a weight reflecting its likelihood of correctly describing the interaction of a given 

biomolecular pair in a sentence. This weight is determined from the sources of evidence 

described above, combined using the odds method (3.2.2.2). Thus, we can weight each 

IIT occurrence in the set of sentences and sum the weights, instead of merely counting 

the number of occurrences of an IIT in the set. This is even more reasonable because the 



www.manaraa.com

84 

  

tf-idf method presumes that instances of a keyword suggest relevance, so by calculating a 

weight for each occurrence we are building on that presumption. Thus we can restate the 

tf term of the tf-idf method as  





jk jk

jij
i p

p
tf

, ,

,
                                                         (14)   

where i is a specific IIT, k is some IIT, j is some sentence in the set containing the 

biomolecular pair of interest, and pi,j and pk,j are the likelihoods that IIT i and j 

respectively reflect the interaction between the biomolecular pair of interest in sentence j. 

The more often IIT i appears with the two biomolecules and the higher the weight 

(likelihood) associated with each appearance, the higher the value tfi. This satisfies 

clauses 1 & 2 of the hypothesis for the tf term. 

 

For inverse document frequency, based on the model underlying the tf term just described, 

the classical idf expression may be restated as 

}:{
log

bwithib

B
idfi                                                    (15) 

where B is the total number of biomolecular pairs in our corpus, and i with b is true if 

biomolecular pair b tri-occurs in at least one sentence with IIT i but false otherwise. We 

adjust this expression to account for biomolecular pairs that co-occur, but without ever 

tri-occurring in the same sentence with any IIT. No straightforward, sentence-based 

computation could extract a proper IIT to such a pair, even it they did interact. Therefore 

such pairs are outside the scope of the work presented here, and thus were removed from 

consideration. The expression for idf then becomes 

}:{

}:{
log

bwithtb

bwithtb
idf

i
i


                                                (16)                      

where b is a biomolecular pair, t can be any IIT and i is a specified IIT. Eq. (16) requires 

finding the number of biomolecule pairs that an IIT appears with, which is tedious. 

Therefore in order to facilitate computation, equation (16) was approximated as 

|},:{|

|},:{|
log

|}:{|

|}:{|
log

sbsts

sbsts

bwithtb

bwithtb
idf

ii
i 





                         (17)                    
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where s is a sentence. 

 

Based on eq. (14), and similar in meaning to the classical idf expression (eq. 10), eq. (17) 

satisfies clauses 1 & 2 of the hypothesis for the idf term. If we have identified all 

sentences with tri-occurrences, and all sentences with tri-occurrences of which a given 

IIT is a member, we can calculate tf*idf for each IIT occurrence with a given biomolecule 

pair. The IIT with the highest tf-idf value among all candidates would then be ranked as 

the term most associated with the biomolecule pair and thus, if the hypothesis holds, 

would be the correct IIT. 

 

With this approach and its variations, if we are given a biomolecule pair, we can extract 

all possible IITs describing interaction between the pair based on a literature. As 

mentioned above, we use MEDLINE, an 18 million citation collection, as our literature 

base. Through the text empirical analysis above and biologists’ suggestions, we 

constructed a list of 125 IITs in different semantic categories and their 558 variations. 

Then we can scan each sentence in MEDLINE against the biomolecules and IITs in our 

database to evaluate each sentence and then use the tf-idf based method to combine 

evidences from all sentences in MEDLINE to extract the correct IITs.  

 

The whole procedure is implemented in our software, PathBinder. In the query part, users 

can provide two biomolecules to PathBinder, which will access PathBinderDB and return 

all sentences in which the two biomolecules appear. Our system will automatically find 

all synonyms of the input biomolecules based on information in MetNetDB, and the 

sentences containing those synonyms are also returned together. IIT extraction is based 

on sentences returned by PathBinder. When scanning each sentence, the software counts 

each tri-occurrence in the sentence and then records or updates the information about the 

number of sentences containing tri-occurrence used in our method. PathBinder then 

calculates a weight score for each IIT appearing in those sentences (i.e. in MEDLINE), 

ranks them based on the calculated weight score, and then shows them to the user. For the 

present study, PathBinder was used to gather data for an evaluation of clause 3 of the 
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hypothesis that the information collected can be used to extract the IITs describing the 

relationship between bio-molecule pairs of interest.  

 

2.2.4.2 Results and analysis 

 

We have stored into a database more than 30 million sentences, extracted by PathBinder 

from MEDLINE, in which at least one biomolecule in our lexicon appears. There are 

more than 8 million sentences containing at least one tri-occurrence of a biomolecule pair 

and an IIT.  

 

To evaluate our IIT extraction approach, we randomly chose 200 pairs of biomolecules 

that co-occurred in those sentences. Of these, biologists judged that 106 pairs of 

biomolecules occurring with IIT(s) interact. We processed these 106 pairs with 

PathBinder, which returned a ranked list of potential IITs for each pair. For example, for 

the biomolecule pair “chlordecone” and “cytochromes P-450,” PathBinder returned the 

ranked IIT list shown in Table 29. 

 

Table 29. List of IITs tri-occurring with biomolecule pair chlordecone and cytochromes P-450, 
ranked by likelihood of correctly describing their interaction as calculated using text empirics. 

 
induce            

change  

potentiate  

reduce  

regulate  

increase  

alter  

amplify  

affect  

control  

produce  

decrease  

bind  

lower  

metabolize  

derive 

 

While this list contains 16 IITs, of which “induce,” “regulate” and “increase” are correct, 

up to 87 IITs were returned for each pair. On the other hand, some pairs had only one IIT 

in their lists. We manually investigated each returned IIT list and noted the correct IITs 
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for its corresponding biomolecule pair. Figure 21 shows that 90% of the pairs appeared in 

at least one sentence with a correct IIT in our IIT lexicon, and how good the rankings of 

the lists were when they did. On the other hand, 10% did not tri-occur with a correct IIT 

from the lexicon. The following sentence is an example. 

 

We identified the terpene synthase TPS10 that forms (E)-beta-farnesene, (E)-alpha-

bergamotene, and other herbivory-induced sesquiterpene hydrocarbons from the 

substrate farnesyl diphosphate. (Schnee et al., 2006) 

 

In this sentence, TPS10 forms sesquiterpene molecules from farnesyl diphosphate. Thus 

clearly there is an interaction between them. However, there is no IIT in this sentence 

indicating this interaction that our system can find because “form” is an ambiguous word 

and for that reason not in our IIT lexicon. 

 

Of the 106 pairs, 67 (63%) ranked a correct IIT first in the associated retuned IIT list. 

Eleven pairs did not have any correct IIT appearing in the sentences in which they co-

occur. Thus for the remaining 95 pairs, 71% of them had a correct IIT returned first in the 

IT list. Figure 21 shows that when the correct IIT appears, it always ranked 12 or better. 

In more detail, a correct IIT was returned first 71% of the time, first or second 80% of the 

time, in the top three 88% of the time, and in the top four 93% of the time. In other 

words, more than 90% of the time a correct IIT was in the first four IITs returned when it 

was present at all. Thus the results show that our system tends to rank correct IITs above 

incorrect ones. 

It should be noted that some biomolecule pairs have only one correct IIT in their IIT 

result list, and of these, some pairs only have one in their lists, which is the correct IIT. 

On the other hand, some pairs have multiple correct IITs in their IIT results lists. For each 

pair of biomolecules, we determined the information retrieval metrics of recall and 

precision as follows. Suppose for a given biomolecule pair, N IITs are returned, of which 

C are correct. Let cn, n = 1…N, be the number of correct IITs among the n top-ranked 

IITs, and let the IIT recall rates r(n) of a given IIT list be:  

     r(n) = cn/C.                                                      (18) 
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Figure 21. Percentage of correct IITs present in the top n ranks. 

 

 

 

Similarly, let the IIT precisions p(n) for a give IIT list be: 

     p(n) = cn/N.                                                      (19) 

Every value of n has associated IIT recall and precision values r(n) and p(n). We can 

therefore plot recall against precision for each IIT list. The mean precision, plotted vs. 

recall, is shown in Figure 22. We can see the precision is generally higher than 0.6 no 

matter how much the recall is. 

The discussion thus far has not considered cases in which the interaction between two 

biomolecules is not described by a single IIT in the sentence. However, such cases occur. 

For example consider the following sentence. 

S5. Glutathione peroxidase (Se-GPx) is a selenoenzyme which catalyzes the reduction of 

hydroperoxides by glutathione (GSH), in most mammalian cells. (Chaudière, 1986) 
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Figure22. Average precision vs. Recall of results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The biomolecule pairs of interest in these two sentences are “glutathione peroxidase” and 

“glutathione.” The interaction between these biomolecules, as described in these 

sentences, is not named by a single IIT. Instead, the sentences follow the patterns “A 

catalyzes the reduction of B by C” and “A catalyzes the conjugation of C to B.” 

Regarding interactions between biomolecules A and C, these sentences imply that such 

relationships exist, but do not describe them explicitly and directly using an IIT.  

 

For example, in this sentence, A catalyses a reduction process and C is involved in this 

process. We can infer that A causes oxidation of C, but because the sentence does not say 

this directly, it would be hard to design an algorithm to identify this interaction. For our 

purposes, if we want to know whether A and C interact or not, this sentence is evidence 

they do. But if we want to determine through software what the interaction is, then this 

sentence is likely to mislead the algorithm, for neither “catalyze” nor “reduce” truly 

describes the interaction: the relationship between A and C is not one of either catalysis 
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or reduction. Therefore, in this sentence we do not count “catalyze” and “reduce” as 

correct IITs. 

 

To be precise, we could say the relation between A and C in this sentence is “catalyze 

reduction to.” However, here we have aimed to extract a single accurate IIT describing 

the interaction between two biomolecules, not a phrase or combination of several IITs. 

This relatively complex situation occurs because the interaction in the sentence is actually 

between a biomolecule and a process.  

 

Alternatively, one might consider sentences such as that sentence as indicating a relation 

among three biomolecules. Then when searching for the interaction between A and C, the 

third term B would be extracted for the user, in addition to the two IITs. In fact, there are 

a series of IITs that can (but do not necessarily) act like “catalyze” in these examples: 

“inhibit,” “stimulate,” and so on. Like more typical IITs, they can appear early in a 

ranked result list. Indeed, they are helpful to biologists for identifying interactions 

between biomolecules. If we also count those words as correct in our 106-pair test corpus 

results, the percentage of pairs whose IIT lists have a correct IIT ranked first increased 

from 60% to 63% for all 106 pairs and from 68% to 71% for pairs with at least one 

correct IIT in the results list.  

 

Some IITs indicate a relationship between two biomolecules, but not what kind. For 

example, in this sentence, 

 

Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. (Hao et al., 

2003) 

 

the IIT “interact” does describe that there is an interaction between AL2 and kinase, but 

unfortunately, it does not say what kind of interaction. Other such IITs include “affect,” 

“influence,” and so on. We classify these IITs as vacuous. 
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For the purpose of extracting correct IITs, we cannot deny the correctness of vacuous 

IITs. Therefore every vacuous IIT appearing in the results list should be counted as 

correct if the purpose is to find all correct IITs without regard for usefulness. However, 

vacuous IITs are not very useful because they are not specific about the type of 

interaction between the given pair of biomolecules. Nevertheless, because a vacuous IIT 

is correct, we may wish to count it as correct even it does not describe the interaction 

between the biomolecule pair of interest. For example, consider the sentence 

 

While Zn2+ was capable of inhibiting all the enzymes except the H+-ATPase, AlCl3 and 

Al-citrate had minimal effects except for with phospholipase A2 where an interaction 

with AlCl3 occurred. (Jones et al., 1997) 

 

There are two vacuous IITs: effects and interaction. They do not describe an interaction 

between “citrate” and “phospholipase A2” in the sentence. But from other sentences, we 

know that “citrate” can inhibit (hence have an effect on and interact with) “phospholipase 

A2”, so “effect” and “interact” are counted as correct IITs. For this reason, if we count all 

vacuous IITs appearing in the sentences with given biomolecular pairs, the analysis result 

is slightly different from Figure 21, as shown in Figure 23. Compared to Figure 21, 

Figure 23 shows that when vacuous IITs are counted as correct, more correct IITs are 

found at earlier ranks in the IIT result lists (66% vs. 63% for rank 1, 75% vs. 73% for 

rank 2, 83% vs. 79% for rank 3, etc.). But for the subset of pairs that excludes pairs 

without at least one sentence containing a correct IIT, there is little difference. In this new 

analysis, the additional correct IITs add more data points so that Figure 25 has higher 

density than Figure 24, though they otherwise appear somewhat similar. 

However, counting vacuous IITs as correct contradicts our original intent of investigating 

methods for extracting correct IITs, because these vacuous IITs often are not useful for 

biologists. Yet, so far we have treated them like other IITs, resulting in Figures 21 and 22. 

Alternatively, we can delete vacuous IITs from the results lists, in which case we get 

Figures 26 and 27. Removal of vacuous IITs makes fewer correct IITs appear in earlier 

ranks. However, for the subset that excludes pairs for which no sentences contain a 
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correct IIT, the percentages of pairs having correct IITs appearing in the top three ranks 

are a little higher (72%, 82%, and 90%).  

Figure 23. Percentage of correct IITs present in the top n ranks, counting vacuous IITs. 

 

 

 

For incorrect IITs in the result lists, a typical situation is that the IIT describes the 

interaction of one biomolecule in the given pair with another biomolecule not in the pair, 

or it is involved in 3-way interaction as in the “Xanthine oxidoreductase” sentence 

examples above. Moreover, for 3-way interaction descriptions, IITs involved can get high 

rankings so our non-syntactic approach can mistakenly conclude that such an IIT is the 

correct IIT for the pair, like “reduce” in the example sentence about “gutathione 

peroxidase” and “glutathione” above. Analyzing the syntactic structure of the sentence, 

as with full parsing, may help solve this problem as it would help solve the direction of 

interaction (“reduced by” and “conjugation of”), but the extraction of an interaction 

between a biomolecule and another interaction is ultimately needed. 
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Figure 24. Precision vs. recall of results. 
 

 
Figure 25. Precision vs. recall of results counting all vacuous IITs 
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Figure 26. Percentage of correct IITs present in the top n ranks with vacuous IITs deleted from 
results lists. 

 

Figure 27. Precision vs. recall of results with vacuous IITs deleted from results lists. 
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There are some pairs in our results for which no correct IITs are in the returned list. A 

typical problem is that the correct IITs were not recognized as IITs at all. An unusual IIT 

might not be stored in our database and so would not be recognized. For example, 

consider the following sentence. 

 

In the wild type, PGR5-dependent PSI cyclic electron transport competed with NADP(+) 

photoreduction. (Okegawa et al., 2008) 

 

If we try to find an interaction between PGR5 and PSI, there is no obvious IIT describing 

their interaction. But the word “dependent” describes a relation between“PGR5” and 

“PSI cyclic electron transport,” so there is indeed an interaction described. However, 

“dependent” and its root word “depend” are not yet recognized by our system, which 

results in no correct IIT returned for PGR5 and PSI. Besides unrecognized IITs, there are 

also some unrecognized variants of otherwise recognized IITs. For example, 

 

Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. (Hao et al., 

2003) 

 

In this sentence, “inactivate” was not extracted because it is not in the IIT lexicon in our 

system, although “activate” is. A more comprehensive IIT lexicon could solve this 

problem. 

 

2.3 Conclusion and future research 

2.3.1 Conclusion and discussion 

I developed a new method for extracting biomolecular interactions from natural text, in 

particular from scientific article abstracts in MEDLINE. To do this, I first investigated 

manually how different syntactic and semantic features influence biomolecular 

interactions and summarized the resulting empirical data about it. This data is public and 

anyone can use it. Based on this set of empirical data, we designed a naïve Bayes based 

algorithm to extract sentences that are likely to describe interactions between given 

biomolecules from the MEDLINE collection of scientific articles. Combining evidences 
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from sentences across all of MEDLINE, I created a biomolecular interaction network for 

MetnetDB. Besides pure interaction pair extraction, I also performed research on how to 

extract the interaction indicating terms associated with a specific interacting biomolecular 

pair in order to describe the interaction between the pair. I also manually collected text 

empirics data for the IIT extraction task. We used the naïve Bayes method to utilize this 

empirical data to evaluate the weight contributed by each sentence in MEDLINE and 

then combined the weights of sets of sentences, using the tf-idf metric to find the best 

IITs for any biomolecular pair.  

 

The research is implemented in the PathBinder software, which provides a search 

interface for users to input a biomolecules pair and other feature constraints to search 

interaction descriptions from MEDLINE. PathBinder is part of MetNet software suite.  

The MetNet bioinformatics platform is a suite of software applications designed for 

analysis of genomic, proteomic, transcriptomic, and metabolomic experimental data. 

MetNet applications use innovative visualization, statistical, and graphing techniques to 

help users analyze metabolic and regulatory networks. 

 

For interaction description extraction, we tried a naïve Bayes based method to give an 

interaction likelihood score for each sentence and rank them based on this score. We 

randomly chose several hundred sentences from MEDLINE for different randomly 

chosen biomolecular pairs and PathBinder calculated interaction scores for them. 

Meanwhile we manually judged each sentence. Then we did linear regression between 

the PathBinder scores and the manual judges, and found that the likelihood score reflects 

the proportion of sentences describing an interaction for different score ranges correctly. 

Our linear regression result is very close to the line y=x.  

 

There are different ways to extract interactions from natural text. Simple counting of co-

occurrences of two biomolecules, or of tri-occurrences of two biomolecules and one 

interaction indicating term, is the first method we tested. It can get a high recall since it 

covers most interaction descriptions. However, many of the cases it finds are not real 

interaction descriptions so that the method usually has low precision. Thus most systems 
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that use this type of approach have involved manual post-processing to improve precision. 

Our method used rules behind samples of real natural texts and applied these rules on the 

co-occurrences and tri-occurrences to extract interactions. In addition, our likelihood 

score ranking policy returns ranked co-occurrences and tri-occurrences with higher 

precision and without decreasing recall.  

 
The method I used compares manual judgments of whether sentences describe 

interactions or not. The judgments are used to rate the results provided by rules based text 

parsing method. Depending on the construction of these rules, the recalls and precisions 

of are different. Looser rules have more comprehensive results (high recall) but with 

more mistakes (low precision). On the contrary, constricting rules extract fewer results 

but usually have higher precision. This helps explain that MedScan (Daraselia et al., 2003) 

obtained a recall of 21% and a precision of 90% with relatively restrictive templates, 

while Koike et al. (2005) achieved 54% recall with relative simple rules. In addition, to 

improve the precision of extracted interactions, some methods have used full parsing 

procedures to implement detailed sentence syntactic structure analysis. In principle, full 

parsing can bring more precision. However current NLP technology cannot solve 

ambiguous parsing results well, and these often occur. Therefore the precision of full 

parsing cannot be assured presently. In addition, parsing text, especially full parsing, has 

a higher computation resource requirement. In comparison, our method has lower 

resource requirements, due to the light text parsing. We use a ranking policy to return all 

possible sentences describing interactions but in order of interaction description 

likelihood score. In this way, we can assure a higher recall but keep high precision for 

those sentences with high scores. This is the same ranked results philosophy used by 

standard Web search engines. 

 

Besides parsing and matching methods, applying statistical analysis on parsed result is 

another way to extract interactions. Statistics based machine learning has become popular 

for many applications. Instead of manually predefined rules, computer can use different 

methods, e.g. SVM, CRF, and BN, to learn the rules behind training corpora and then use 

these rules to extract interactions. However, the biggest problem of machine learning is 
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that the rules are related to a specific algorithm and usually are not very readable for 

users. Also the rules are not very applicable to other applications. We manually analyzed 

samples from MEDLINE, and the data used for the rules (interaction description 

probabilities for different features) are direct, simple, and easy to be reused by other 

method and researchers. 

 

For interaction extraction, we not only developed a method for finding sentences 

describing interactions between biomolecule pairs, but also a method for finding a 

specific term describing the interactions between a biomolecule pair. In other words, we 

can both extract interacting pairs and also the interactions between them. There are 

relatively few reports on extracting interaction terms or interaction types for interacting 

pairs in the literature. For most of them, instead of extracting interacting pairs in texts 

they try to extract triples consisting of an interacting pair of biomolecules plus a verb, 

where the verb describes the interaction between the pair of biomolecules. Here we not 

only extract sentences where a triple appears but combine evidence provided by multiple 

sentences together based on statistics and information retrieval to extract the right 

interaction indicating terms for pair of biomolecules. Our evaluation results showed that 

our average precision is always over 60% no matter how high the recall is in our ranked 

IIT lists. 

 

We have investigated a number of syntactic and semantic features about sentences and 

interaction indicating terms, and then uses a Naïve Bayes related method to combine 

them. However only a limited number of features were investigated. In general, the more 

features we analyze, the more precise the extracted interactions may be expected to be. 

Besides more features to analyze, there are more directions we can continue research on. 

The following sections provide more details on these directions for future research. 

 

2.3.2 Interactions involving several interaction-indicating terms 

As mentioned for IIT extraction, all of the methods above assume the interaction can be 

expressed by an interaction-indicating term. However, some interactions are described by 
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several IITs and even several biomolecules. Currently we count them as interaction 

descriptions and some IITs involved as correct IITs. For example: 

 

Xanthine oxidoreductase catalyses the anaerobic reduction of glyceryl trinitrate (GTN), 

isosorbide dinitrate and isosorbide mononitrate to inorganic Nitrite using xanthine or 

NADH as reducing substrates. (Doel et al., 2001) 

 

Starch, d-glucose, salinomycin and monensin inhibited the production of skatole and 

indole from Trp, and skatole from indoleacetic acid by rumen bacteria. (Mohammed et 

al., 2001) 

 

In the first sentence, the interaction can be described as “A catalyses reduction of B to 

C.” For the biomolecule pair A and C, there is no single IIT to describe their interaction. 

We could say the relation between A and C is “catalyze reduction to” or “stimulate 

production of,” but in the corpus analysis we cannot record these kinds of interaction 

terms because they are combinations of terms.  

 

To be precise, this situation should not treat these several interaction-indicating terms like 

interaction terms in simple situations such as “A binds B.” In addition, when several 

interaction-indicating terms appear together in one sentence, the probability that any 

given one is the correct interaction term should be lower than if there is only one 

interaction-indicating term appearing in the sentence. Therefore, to adjust the probability, 

if there are n interaction-indicating terms in one sentence, each interaction term’s 

probability used to give an overall evaluation in equation (11) will be divided by n. Then 

equation (14) becomes: 





jk jjk

jjij
i np

np
tf

, ,

,

/

/
                                                    (18) 

where pm,j is the probability that the interaction-indicating term m gets from sentence j in 

the “document” consisting of sentences containing the given biomolecule pair, and n,j is 

the times of occurrence of all interaction-indicating terms in the sentence j.  
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However, to divide the probability by the number of occurrences of interaction-indicating 

terms in the sentence is only a proposal. Its validity needs to be verified in the future. 

Analyzing the text by hand and finding the empirical results is the only precise way to 

find the influence of multiple IITs on the probability that a correct interaction-indicating 

term appears. For a corpus containing sentences where different numbers of interaction-

indicating terms occur, we could divide them into groups based on the numbers of 

interaction-indicating terms in each sentence. Then the proportion of sentences 

containing the correct interaction-indicating terms in each group could be determined. 

Based on the results, appropriate statistical methods could be used to find the relation 

between the likelihood of correct IIT and the number of IITs. Finally the empirical results 

could be used in section 2.2.4.1 or in equation (18). The properties dealt with in this 

empirical analysis are different from those we are analyzing in this research. In the future, 

it will be useful to conduct experiments to help with handling of the situation in which 

several interaction-indicating terms appear together in conjunction with simple situations 

like “A binds B.” 

 

Actually, this relative complex situation occurs because the interaction is actually 

between a biomolecule and a process. If, in the future, we can identify such interactions, 

then we may look at processes as actors in interactions and the problem would be solved. 

Alternatively, we can look at the situation as a relation among three biomolecules. Then 

when searching for the interaction between A and C, the third one B also would be 

extracted for the user in addition to the two interaction-indicating terms.  

 
2.3.2 Hidden interaction extraction and integration into interaction networks 

 
Most current interaction extraction research focuses on direct interactions, which are 

based on sentences containing two biomolecules (such as names A and C) as evidence for 

the interaction of these two biomolecules. However, sometimes these two biomolecules 

may not appear in the same sentence or abstract, but they may be connected by another 

biomolecule (call it B) that appears in the same sentence or abstract with each of them 

even though A and C might never appear together. Then we can say A and C have an 

implied interaction described by the sentences describing A and B and the sentences 
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describing B and C. The module to find the hidden links between A and C has been 

implemented in PathBinder (Figure 28) and is named the “ABC” module. Given two 

biological entities, the ABC module finds a list of B terms. When users choose any word 

in that list, PathBinder will show the sentences containing A and the selected B, and the 

sentences containing the selected B and C. The terms A, B and C come from 

PathBinder’s dictionary.  

 

As mentioned in the previous section, the interaction evidence assessment can be 

computed from all sentences containing both terms. The ABC module can give a 

complementary way to assess the evidence for interaction using indirect co-occurrence. 

The integration of the ABC module into the interaction computation would give a more 

comprehensive assessment of the evidence for an interaction. 

 

Figure 28. ABC module in PathBinder. 

 

 

 
The plan for this integration includes two parts. The first part is for co-occurrence search 

results. There will be a way to show not only actual co-occurrences but also indirect co-

occurrences. The display of sentences should not simply assume indirect co-occurrences 
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give less evidence of interaction than direct co-occurrences. We cannot tell whether a 

direct or an indirect co-occurrence has a higher probability to describe an interaction 

without computing the probabilities. A method to give the probability that an indirect co-

occurrence describes an interaction needs to be specified. The factors should include 

those factors that compute the probability P(AB) that A and B interact, the probability 

P(BC) that B and C interact, and a way to combine them into a composite probability 

P(AC): 

P(AC) = P(AB) * P(BC)                                                (16) 

Incorporating evidence for interactions provided by the ABC module, the interaction 

database will be changed.  

 The interaction score of existing pairs will be increased by accounting for the 

additional indirect interaction evidence.  

 New interaction pairs may be found through the indirect co-occurrences. These 

pairs need to be added into the interaction database.  

However, several issues arise: 

 When computing the interaction evidence score for biomolecules A and C, the 

scores for interaction evidence between A and B, and between B and C, are 

important. But the AB score could be influenced by not only sentences 

containing A and B, but also sentences containing A and D, and other sentences 

containing D and B. Which kind of score for AB should be used?  

 To find indirect evidence of interaction, how many links should be used in the 

computation? For example, A-BCD-E indicates an interaction between A and E. 

In fact, limiting ourselves to 3-node paths like ABC cannot assure accuracy 

because evidence for interaction between A and C due to longer paths, like 

ABDC, is not accounted for. 

 Should we differentiate the scores for direct interaction evidence and indirect 

interaction evidence when computing a final probability score for interaction of a 

pair? 

To solve these problems, we can make some requirements for applying the ABC model. 

To compute the interaction score between A and C using an implicit relation through B, 

the score of AB and BC must come from the direct interaction relation in literature and 
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only allow one intermediate biomolecule to compute the implicit relation score. To 

combine the direct and implicit score, we can give different weight to different scores 

and then test the results to see which weight is better. 

 

When these problems are resolved, the interaction database will be more comprehensive 

because some new interactions may be found from the literature without ever being 

explicitly stated in the literature. 
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Appendix I Text empirics data sample 

Text empirics data sample table “ATP” & “Myosin” 
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99
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

PMID sentences Verb root verb in sen

Interactio
n 
described
?

correct 
interaction 
word

Describe 
the
interactio
n in 
sentence?

Number 
of
words 
from
the other 
(different 
from 
nearest)
biomolec
ule

Number 
of
words 
from
the 
nearest
biomolec
ule

between 
biomolec
ules?

All in
a phrase?

between 
biomolecul
es 
in phrase

BiomolecuATP myosin Noun
Adjective

Adverb AssociatioModificati

Negative 
Regulatio
n

Positive 
Regulatio
n Transportacreate Others

Present 
tense

Present
continuo
us

Past 
tense

Perfect 
tense

17510632
Here, we de 0

block blocking 0 0 1 1 6 0 1 1 1
bind binding 1 0 1 1 8 0 0 1 0
release released 0 0 1 1 16 8 0 1 0

17498971
Type II myo 1 y y

interact interaction 0 0 1 1 9 5 1 1 1
consume consuming 1 1 1 1 14 0 1 1 1

17488711
The additio  1 y y y y

increase increased 0 0 1 1 8 7 1 1 1
increase increasing 0 0 1 1 14 1 1 1 1
hydrolize hydrolysis 1 1 1 1 17 0 0 1 0

17483158
Nano-electr  1 y y

bind binding 1 1 1 1 11 1 0 1 0
Increases in  0

increase increases 0 0 1 1 28 5 0 1 0
bind binding 1 0 1 1 13 8 1 1 1
hydrolize hydrolysis 1 0 1 1 24 1 0 1 0

The binding 1 y y
bind binding 1 1 1 1 3 1 0 1 0
bind binding 1 0 1 1 18 4 1 1 1

17450844 We have fo  0
hydrolize hydrolysis 1 0 1 1 16 0 0 0
couple coupling 0 0 1 1 14 1 1 0

17449872
Selective Pe 0

hydrolize hydrolysis 1 0 1 1 13 0 0 1 0
release release 0 0 1 1 16 3 0 1 0

After ATP b 1 y y
bind binding 1 1 1 1 1 0 1 1 1

Our result  0
influence influences 0 0 1 1 11 4 0 1 0
control controlling 0 0 1 1 4 1 1 1 1
hydrolize hydrolysis 1 0 1 1 7 0 0 1 0
release release 0 0 1 1 10 3 0 1 0

17438284
Mechanism 1 y y y

catalyze catalyzed 1 1 1 1 2 0 1 1 1
hydrolize hydrolysis 1 1 1 1 1 1 1 1 1

The intrinsi  1 y y y y
hydrolize hydrolysis 1 1 1 1 2 0 1 1 1
catalyze catalyzed 1 1 1 1 1 1 1 1 1
combine combined 0 0 1 1 9 5 0 1 0

Starting wit  0
derive derived 0 0 1 1 21 16 0 1 0
bind bound 1 0 1 1 2 1 1 1 1
transform transformation 0 0 1 1 14 0 1 0 0

The modele 1 y y y y
transform transformation 0 0 1 1 22 17 0 1 0
hydrolize hydrolysis 1 0 1 1 13 8 0 1 0
bind bound 1 1 1 1 2 1 1 1 1
change changes 0 0 1 1 8 3 0 1 0
release release 0 0 1 1 10 5 0 1 0

17391512 On amino a  0
bind binding 1 0 1 1 6 0 1 0
bind binding 1 0 1 1 4 2 1 0

17275022
After myosi 1 y y

bind binds 1 1 1 1 0 0 1 1 1
release releases 0 0 1 1 3 1 1 0

17184900
We examin  0

regulate regulating 1 0 1 1 13 7 0 1 0
hydrolize hydrolyzed 1 0 1 1 9 3 0 1 0

17142278  At the mole 1 y y y y
generate generates 0 0 1 1 5 0 1 1 1
couple coupling 0 0 1 5 0 1 1 1
hydrolize hydrolysis 1 1 1 1 7 0 0 1 0

17081565 ATP bindin 1 y y y y y
bind binding 1 1 1 1 1 0 1 1 1
disassocia disassociate 0 0 1 1 6 3 1 1 1
hydrolize hydrolysis 1 0 1 1 7 1 1 1 1
bind binding 1 0 1 1 3 1 1 1 0

17012748
. The dissoc 1 y y y

disassocia disassociation 0 0 1 1 7 3 0 1 0
bind bound 1 1 1 1 2 0 1 1 1

The present  1 y y
hydrolize hydrolysis 1 1 1 1 8 0 0 1 0

16963465 It was found 1 y y
consume consumed 1 1 1 1 2 0 1 1 1
activate activated 0 0 1 1 17 3 0 1 0
interact interaction 0 0 1 1 20 6 0 1 0

16950853 . In the skel  1 y y
hydrolize hydrolysis 1 1 1 1 4 2 0 1 0

16644482 Myosins co  1 y y
hydrolize hydrolyzing 1 1 1 1 7 0 1 0
produce producing 0 0 1 1 10 1 0 0

16359625 By analyzin 1 y y y
hydrolize hydrolysis 1 0 1 1 30 0 1 1 1
breakdownbreakdown 1 1 1 1 8 2 1 1 1

15863618
The power  0

hydrolize hydrolysis 1 0 1 4 0 0 1 0

  Forms                                       Category

             Verb
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149

150
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163
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166
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168

169
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171

172
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174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Upon bindin 1 y y y
bind binding 1 1 1 1 3 2 0 0
disassocia disassociates 0 0 1 1 1 0 0 0

15848287 A crucial po 1 y y y
generate generation 0 0 1 1 13 9 0 1 0
release released 0 0 1 1 5 1 0 1 0
hydrolize hydrolysis 1 1 1 1 2 0 1 1 1

We assume  1 y y y y y
hydrolize hydrolysis 1 1 1 1 14 0 1 1 1
transmit transmitted 0 0 1 1 11 3 1 1 1
bind binding 1 1 1 1 11 3 1 1 1
transmit transmission 0 0 1 1 28 12 0 0

15504033 Myosin is a  1 y y
catalyze catalysis 1 1 1 1 8 1 1 0
hydrolize hydrolysis 1 1 1 1 10 0 0 0

15489300 Upon bindin 0
bind binding 1 0 1 1 12 2 0 0
change change 0 0 1 1 18 8 0 0

15454448 Myosin pro  1 y y y y
produce produces 0 0 1 1 14 0 1 0
interacte interaction 0 0 1 1 9 5 1 0
bind binding 1 1 1 1 10 4 1 0

15345561
Binding of  0

bind binding 1 0 1 1 9 7 0 1 0
bind binding 1 0 1 1 3 1 0 1 0
inhibit inhibition 0 0 1 1 6 4 0 1 0

Ca(2+) and  0
stabilize stabilize 0 0 1 1 2 0 0 1 0

The position 1 y y y
bind binding 1 0 1 1 3 1 0 1 0
affect affects 0 0 1 1 5 3 0 1 0
affect affect 0 0 1 1 1 0 1 1 1
bind binding 1 1 1 1 1 0 0 1 0

Ca(2+) and  0
alter alter 0 0 1 1 1 0 0 1 1
bind binding 1 0 1 1 9 7 0 1 0

A parallel p  0
regulate regulation 0 0 1 1 8 6 0 1 0
affect effect 0 0 1 1 5 3 0 1 0
bind binding 1 0 1 1 2 0 1 1 1
bind binding 1 0 1 1 6 4 1 1 1
complex complexes 0 1 1 10 7 0 1 0

15247304
ATP binds  1 y y y y

bind binds 1 1 1 1 2 0 1 1 1
form formation 0 0 1 1 12 7 0 1 0
complex complex 0 0 1 1 18 13 0 1 0

In the prese  0
bind bound 1 0 1 1 14 8 0 0
inhibit inhibits 0 0 1 1 22 16 0 0
bind binding 1 0 1 1 24 18 0 0

15205456
Blebbistatin 0

bind binding 1 0 1 1 6 1 0 1 0
induce induced 0 0 1 1 5 0 0 1 0
disassocia dissociation 0 0 1 1 7 3 0 1 0

15196563 Myosins are 1 y y y
hydrolize hydrolysis 1 1 1 1 8 0 0 1 0
mediate mediated 0 0 1 1 9 1 0 1 0

12726731 Most biomo 1 y y
bind binding 1 1 1 1 9 0 0 0

12482135 Actin and m 1 y y y y y
interact interact 0 0 1 1 11 0 1 1 1
link linked 0 0 1 1 7 4 1 1 1
hydrolize hydrolysis 1 1 1 1 10 1 1 1 1

12471887 Solution me 1 y y y y
bind bind 1 0 1 1 4 1 1 1 1
dissociate dissociate 0 0 1 1 3 2 1 1 1
hydrolize hydrolysis 1 1 1 1 7 0 0 1 0

At high sli 1 y y y
interact interactions 0 0 1 1 4 4 1 1 1
hydrolize hydrolized 1 1 1 1 10 0 0 1 0

12381388 The putativ  1 y y
bind binding 1 1 1 1 16 2 0 0

Total sentences

Total 
interactio
n

Total 
interactor 
apperanc
e

Total 
Verb 
apperanc
e

Total 
Noun

Total 
verbs 
appearing 
in phrase

between 
biomolec
ules 
in phrase

=COUNT 46 30 62 113 41 0 0 18 33 19 0 43 28 3 12 8 3 16 50 90 40
Total 
Verb 
describin
g 
interactio
n in 
sentence

Total 
noun 
interactor

Total 
adjinterac
tor

Total adv 
interactor

Total 
present 
tense 
interactor

Total -
ing 
interactor

Total 
PAST 
interactor

Total 
Perfect 
interactor

Total 
associatio
n 
interactor

Total 
modificat
ion 
interactor

Total 
negative 
interactor

Total 
positive 
interactor

Total 
transpora
tion 
interactor

Total 
create 
interactor

Total 
OTHERS 
interactor

Total 
interactor
s

Total 
interactor
s

34 20 0 0 4 28 9 0 32 24 0 4 0 0 2 31 49 25
0.4878 0.22222 0.84848 0.47368 0.74419 0.85714 0 0.33333 0 0 0.125 Percent: 0.54444 0.625

Total 
noun 
describin
g 
interactio
n

Total adf 
describin
g 
interactio
n

Total adv 
describin
g 
interactio
n

Total 
present 
describin
g 
interactio
n

Total -
ing 
describin
g 
interactio
n

Total 
past 
describin
g 
interactio
n

Total 
perfect 
describin
g 
interactio
n

Total 
associatio
n 
describin
g 
interactio
n

Total 
modificat
ion 
describin
g 
interactio
n

Total 
negative 
describin
g 
interactio
n

Total 
postivie 
describin
g 
interactio
n

Total 
transport
ation 
describin
g 
interactio
n

Total 
create 
describin
g 
interactio
n

Total 
others 
describin
g 
interactio
n

Total 
verbs 
between 
biomolec
ules out 
of phrase

Total 
verbs 
appearing 
out of 
phrase

not 
between 
biomolec
ules in 
phrase

13 0 0 3 12 6 0 14 15 0 3 0 0 2 50-40=10 113-90=2390-40=50
0.31707 0.16667 0.36364 0.31579 0.32558 0.53571 0 0.25 0 0 0.125 Total interTotal interTotal inter

31-25=6 62-49=13 49-25=24
Total 
sentence 
containin
g: 29 15 25 16 29 25 3 11 7 3 12 0.6 0.56522 0.48

Interaction 21 10 13 11 18

18

0 6 4 3 8

Total 
verbs out 
of  
biomolec
ules out 
of phrase

0.72414 #DIV/0! #DIV/0! 0.66667 0.52 0.6875 #DIV/0! 0.62069 0.72 0 0.54545 0.57143 1 0.66667 23-10=13
Total 
phrase 
containin
g 25 11 15 15 21 21 2 10 6 2 9 Total interactors
Interaction 20 8 8 11 14 16 0 6 3 2 5 13-6=7

0.8 #DIV/0! #DIV/0! 0.72727 0.53333 0.73333 #DIV/0! 0.66667 0.7619 0 0.6 0.5 1 0.55556 0.53846
Total 
phrases 
where 
verbs are 
between 
biomolec
ules 9 9 10 10 15 7 1 3 1 1 7
Interaction 9 8 6 9 11 7 0 3 1 1 6
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Analysis of the sample data table 

 
 
Data: 
For the sentence set retrieved for each biomolecule pair, the properties of the constituent 
of sentences and all interaction-indicating terms involved were tabulated.  
In this table, note the following observations. 

 Column C (interaction-indicating term root) shows the roots of the interaction-
indicating terms appearing in the sentences, and column D (interaction-indicating 
term in sentence) shows the exact appearance of each interaction-indicating term 
in the sentence, whose form can be one of columns H through N.  

 Column E (interaction described) records whether the sentence describes the 
interaction between the two biomolecules (1 means yes, 0 means no. The same 
also applies to those of the following columns which require values of 1 or 0.) 

 Columns F and G are about interaction-indicating terms.  
 Column G (Describe the interaction in sentence?) shows whether the interaction-

indicating term is used to describe an interaction between the two biomolecules of 
concern. For example, consider the sentence “The binding of ATP to myosin-S1 
could be observed in the presence of up to 60 microM of excess MgATP without 
non-specific binding of MgATP to the myosin.” In that sentence “bind” describes 
the interaction between ATP and myosin.  

 Column F (correct interaction word) shows whether the interaction-indicating 
term is the right interaction description for the two biomolecules, regardless of 
what the sentence says. For example, in the sentence “Increases in the molecular 
mass of myosin-S1 of 425 +/- 10 were obtained with the binding of ADP to the 
active site and by 530 +/- 10 with either ATP or hydrolysis products ADP and 
phosphate”, “bind” is not used to describe an interaction between ATP and 
myosin. However, from the last example we know “bind “is indeed the interaction 
between ATP and myosin, so column F will show for “bind” in this sentence.  

 Columns O through U are for the categories of the interaction-indicating terms 
involved in the sentences. They are “association,” “modification,” “positive 
regulation,” “negative regulation,” “transportation,” “transcription,” “creation,” 
and “vague.” If an interaction-indicating term belongs to one of them, the 
corresponding column contains 1.  

 Columns V through Z contain position data for the interaction-indicating terms. V 
and W are the distances from a term to the nearest biomolecule and to the other 
biomolecule in the pair of biomolecules. X, Y and Z give information about 
whether the interaction-indicating term is in the same phrase as the pair of 
biomolecules, whether it is between the two biomolecules in a phrase, and 
whether it is between the two in a sentence or not.  
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Analysis part: 
Each table supports computing the following numbers. 

(1) Total number of sentences examined that contain the 2 biomolecules that are the 
subject of the table. 

(2) Number of sentences describing the interaction 
(3) Number of times interaction-indicating terms appear in all sentences 
(4) Number of times an interaction-indicating term describes the interaction between 

the pair of biomolecules of interest in the sentences 
(5) Total times of appearance of correct interaction-indicating terms 

For each category or form: 
(6) Times of appearance of each form or category of the interaction-indicating term in 

the sentence set, e.g., H177 in the table for myosin and ATP (the same table is 
assumed for the following examples.) 

(7) Times of appearance of each form or category of the correct interaction-indicating 
word, e.g., H179 in the table  

(8) 100%*(7)/(6), which gives the probability of an interaction-indicating term being 
the correct one as a function of its form or category, e.g., H180  

(9) Times of appearance of each form or category of an interaction-indicating term 
describing the interaction in the sentence, e.g. H182 

(10) 100%*(9)/(6), which gives the probability that an interaction-indicating term 
describes the interaction in a sentence as a function of its form or category, e.g., 
H183 

(11) The number of sentences containing an interaction-indicating term appearing in 
each form or category, e.g. H185 

(12) The number of sentences containing an interaction-indicating term appearing in 
each form or category and describing an interaction between the two 
biomolecules, e.g. H186 

(13) 100%*(12)/(11), which gives the probability that sentences containing an 
interaction-indicating term appearing in a specific form or category describe an 
interaction between the two biomolecules, e.g., H187 

(14) The number of phrases containing both the two biomolecules and an interaction-
indicating term appearing in a specific form or category, e.g. H188 

(15) The number of phrases containing the two biomolecules together with an 
interaction-indicating term appearing in a specific form or category that describes 
an interaction between the two biomolecules, e.g. H189 

(16) 100%*(15)/(14), which gives the probability that phrases containing the two 
biomolecules plus an interaction-indicating term appearing in a specific form or 
category describes an interaction between the two biomolecules, e.g., H190 

(17) The number of phrases containing the two biomolecules plus an interaction-
indicating term that appears in a specific form or category placed between the two 
biomolecules, e.g. H191 

(18) The number of phrases containing the two biomolecules plus an interaction-
indicating term that appears in a specific form or category placed between the two 
biomolecules, that describe an interaction between the two biomolecules, e.g. 
H192 
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(19) 100%*(18)/(17), which gives the probability that phrases containing an 
interaction-indicating term appearing in a specific form or category between the 
two biomolecules, describes an interaction between the two biomolecules, e.g. 
H193 

For the position data: 
(20) The number of interaction-indicating terms also appearing in the same phrase as 

the two biomolecules, e.g. Y177 
(21) The number of correct interaction-indicating terms appearing in a phrase also 

containing the two biomolecules, e.g. Y179 
(22) 100%*(21)/(20), which gives the probability that an interaction-indicating term 

appearing in the same phrase as the two biomolecules is a correct interaction 
word, e.g. Y180 

(23) The number of occurrences of interaction-indicating terms appearing in the same 
phrase as the two biomolecules and appearing between the two biomolecules, e.g., 
Z177 

(24) The number of interaction-indicating term occurrences that are correct interaction 
descriptions, appearing between the two biomolecules and in the same phrase as 
the two biomolecules, e.g. Z179 

(25) 100%*(24)/(23), which gives the probability that an interaction-indicating term 
appearing in the same phrase as the two biomolecules and appearing between the 
two biomolecules is a correct interaction term, e.g. Z180 

(26) The number of times interaction-indicating terms appear in the same phrase as the 
two biomolecules but not appearing between the two biomolecules, e.g. Z182 

(27) The number of times interaction-indicating terms that are the correct interaction 
appear in the same phrase as the two biomolecules but not between the two 
biomolecules , e.g. Z184 

(28) 100%*(27)/(26), which gives the probability that an interaction-indicating term 
appearing in the same phrase as the two biomolecules but not appearing between 
the two biomolecules is a correct interaction word, e.g. Z185 

(29) The number of interaction-indicating terms not appearing in the same phrase as 
the two biomolecules, which is the difference between the total appearances of 
interaction-indicating terms and the appearances of interaction-indicating terms 
appearing in a phrase, e.g. Y182 

(30) The number of times of appearance of interaction-indicating terms that are the 
correct interaction but not in the same phrase as the two biomolecules, which is 
the difference between the total correct interaction-indicating term appearances 
and the number of the appearances of correct interaction-indicating terms in the 
phrase, e.g. Y184 

(31) 100%*(30)/(29), which gives the probability that an interaction-indicating term 
not appearing in the same phrase as the two biomolecules gives a correct 
interaction, e.g. Y185 

(32) The number of interaction-indicating terms that are the correct interaction and do 
not appear in the same phrase as the two biomolecules but do appear between the 
two biomolecules, which is the difference between the total interaction-indicating 
term appearances and the interaction-indicating terms appearing in a phrase, e.g. 
X182 
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(33) The number of times of appearances of interaction-indicating terms that are the 
correct interaction and not in the same phrase as the two biomolecules, but 
appearing between the two biomolecules, which is the difference between the 
total correct interaction-indicating term appearances and the number of 
appearances of correct interaction-indicating terms appearing in a phrase, e.g. 
X184 

(34) 100%*(33)/(32), which gives the probability that an interaction-indicating term 
not appearing in the same phrase as the two biomolecules, but between the two 
biomolecules, represents the correct interaction, e.g. X185. 

(35) The number of interaction-indicating terms appearances not in the same phrase as 
the two biomolecules and not between the two biomolecules, which is the 
difference between the total appearances of interaction-indicating terms and the 
interaction-indicating terms appearing in a phrase, e.g. X187 

(36) The number of interaction-indicating term appearances that correctly indicate an 
interaction not appearing in the same phrase as the two biomolecules and not 
appearing between the two biomolecules, which is the difference between the 
total times of correct interaction-indicating term appearances and the number of 
appearances of correct interaction-indicating terms appearing in a phrase, e.g. 
X189 

(37) 100%*(36)/(35), which gives the probability that an interaction-indicating term 
not appearing in the same phrase as the two biomolecules and not between the 
two biomolecules, represents the correct interaction between the biomolecules, 
e.g. X190 
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Appendix II Results of proportion of different pairs in sentences, phrases, interaction indicating terms investigation 

 

 

 

 

 

Interaction term appearance noun adj adv 
present 
tense 

-ing PAST Perfect 
Asso-
ciation 

Modi-
fication 

negative positive 
Trans-

portation 
transcript create vacuous 

ATY MYOSIN 0.46      1  0.28 0.85 0.42  0.74 0.86 0.00 0.18 0.00 0.00 0.00 0.18 

cre cytokinin 0.63 0.00  0.30 0.75 0.20  1.00 0.00 0.00 0.11 0.20 0.00 0.00 0.00 

nitrite xanthine 0.80 0.00  0.08 0.73 0.39  0.00 0.96 0.00 0.00   0.64 0.22 

glucose-6-p starch 0.74 0.25  0.50 0.25 0.22  0.88 0.25 0.00 0.09 0.00 0.00 0.85 0.00 

glucose-starch 0.53   0.43 0.00 0.37  0.00 0.96 0.00 0.00  0.00 0.87 0.00 

glucose pyruvate 0.45 0.60  0.24 0.33 0.13  0.00 0.13 0.00 0.00 0.00 0.00 0.90 0.75 

acetyl-coa leucine 0.72 1.00  0.17 0.00 0.65  0.00 0.65 0.14 0.00 0.00  1.00 0.89 

indole acetic acid starch 0.00 0.00   0.00 0.00  0.00 0.00 0.00 0.00 0.00  0.00 0.00 

carotenoid ipp 0.40   0.40 0.00 0.14  0.80  0.00 0.00  0.00 0.20 0.00 
pyruvate dehydrogenase  
phosphofructokinase 0.03 0.00  0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00  0.00  

                

Sentence describing interaction                

ATY MYOSIN 0.69   0.67 0.52 0.63  0.62 0.68 0.33 0.40 0.71 0.00 1.00 0.77 

cre cytokinin 0.89 0.50  0.71 0.33 0.81  0.91 0.00 0.78 0.75 1.00 1.00 1.00 1.00 

nitrite xanthine 0.69 0.00  0.75 0.70 0.60  1.00 0.72 0.40 0.68   0.50 0.71 

glucose-6-p starch 0.74 1.00  1.00 0.75 0.69  0.57 1.00 0.71 0.45 1.00  0.84 1.00 

glucose-starch 0.48   0.64 0.80 0.43  0.00 0.80 0.38 0.27  0.00 0.62 0.20 

glucose pyruvate 0.42 0.33  0.60 0.40 0.33  0.00 0.33 0.33 0.20 0.33 1.00 0.50 0.57 

acetyl-coa leucine 0.61 0.50  0.67 0.40 0.63  0.38 0.73 0.33 0.44 0.00  0.74 0.64 

indole acetic acid starch 0.43 0.50  1.00 0.50 0.40   0.67 0.60 0.00 0.00  0.50 0.33 

carotenoid ipp 0.50   1.00 0.50 0.50  0.75  1.00 0.33  0.67 0.67 0.00 
pyruvate dehydrogenase  
phosphofructokinase 0.05 0.00  0.00 0.13 0.00  0.00 0.00 0.06 0.08 0.00  0.00 0.00 
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Phrase describing 
interaction noun adj adv 

present  
tense -ing PAST Perfect 

Asso- 
ciation 

Modi- 
fication negative positive 

Trans- 
portation transcript create 

vacuo
us 

ATY MYOSIN 0.69   0.83 0.50 0.67  0.64 0.68 0.50 0.44 0.57  1.00 0.80 

Cre cytokinin 0.83 0.00  0.50 0.00 0.80  0.90 0.00 0.75 0.56 0.50   1.00 

nitrite xanthine 0.78   0.71 0.50 0.69   0.83 0.33 0.80   0.56 0.67 

glucose-6-p starch 0.78     0.80  0.60 1.00 0.83 0.50 1.00  0.82 1.00 

glucose-starch 0.50   0.71 1.00 0.71   1.00 0.55 0.50   0.86 0.33 

glucose pyruvate 0.52 0.50  0.56 0.60 0.33  0.00 0.57 0.33 0.25 0.00 1.00 0.67 0.62 

acetyl-coa leucine 0.58 0.50  1.00  0.67  0.75 0.86 0.50 0.50   0.57 0.67 
indole acetic acid 
starch 1.00   1.00     1.00 1.00      

carotenoid ipp 0.00   1.00    1.00   1.00  1.00   
pyruvate 
dehydrogenase 
 phosphofructokinase 0.13    1.00 0.00   0.00 0.17 1.00     

1. N/A means no data available  
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Appendix III Interaction-Indicating Term List 

 
verbID verb verb_group verb_category_id #_trioccurrences 
1100001 abolish negative regulation 3 55 
1100002 accompany association 1 62 
1100003 accumulate positive regulation 4 1 
1100004 acetylate modification 2 22 
1100005 activate positive regulation 4 380 
1100006 aggregate association 1 78 
1100007 agonize positive regulation 4 116 
1100008 amplify positive regulation 4 6 
1100009 antagonize negative regulation 3 139 
1100010 associate association 1 280 
1100011 attenuate negative regulation 3 29 
1100012 augment positive regulation 4 36 
1100013 bind association 1 810 
1100014 block negative regulation 3 249 
1100015 blunt negative regulation 3 11 
1100016 cocluster association 1 0 
1100017 coexpress positive regulation 4 15 
1100018 combine association 1 176 
1100019 complex association 1 289 
1100020 conjugate association 1 62 
1100021 convert vague 8 3 
1100022 cooverexpress positive regulation 4 2 
1100023 costimulate positive regulation 4 4 
1100024 counteract negative regulation 3 9 
1100025 couple association 1 112 
1100026 decrease negative regulation 3 576 
1100027 degradate modification 2 78 
1100028 deplete negative regulation 3 88 
1100029 depress negative regulation 3 76 
1100030 derive create 6 1 
1100031 destabilize modification 2 5 
1100032 detoxify modification 2 3 
1100033 diminish negative regulation 3 38 
1100034 diminute negative regulation 3 6 
1100035 disrupt negative regulation 3 23 
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1100036 dissociate association 1 77 
1100037 distribute transportation 5 125 
1100038 downregulate negative regulation 3 5 
1100039 elevate positive regulation 4 130 
1100040 elicit positive regulation 4 4 
1100041 eliminate negative regulation 3 44 
1100042 enhance positive regulation 4 2 
1100043 evoke positive regulation 4 44 
1100044 form create 6 2 
1100045 hydrolyze modification 2 146 
1100046 improve positive regulation 4 35 
1100047 incorporate association 1 266 
1100048 increase positive regulation 4 2 
1100049 induce positive regulation 4 2 
1100050 inhibit negative regulation 3 1316 
1100051 invoke positive regulation 4 1 
1100052 link association 1 144 
1100053 lower negative regulation 3 181 
1100054 lytic modification 2 5 
1100055 maintain positive regulation 4 70 
1100056 mediate vague 8 221 
1100057 mobilize transportation 5 34 
1100058 modify modification 2 187 
1100059 modulate positive regulation 4 67 
1100060 obliterate negative regulation 3 2 
1100061 overexpress negative regulation 3 136 
1100062 oxidate modification 2 1 
1100063 phosphorylate modification 2 183 
1100064 potentiate positive regulation 4 50 
1100065 produce create 6 3 
1100066 promote positive regulation 4 41 
1100067 provoke positive regulation 4 10 
1100068 raise positive regulation 4 53 
1100069 redistribute transportation 5 5 
1100070 reduce negative regulation 3 1 
1100071 regulate vague 8 3 
1100072 release transportation 5 426 
1100073 repress negative regulation 3 3 
1100074 rise positive regulation 4 78 
1100075 stabilize positive regulation 4 2 
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1100076 stimulate positive regulation 4 2 
1100077 suppress negative regulation 3 1 
1100078 transactivate positive regulation 4 24 
1100079 transform modification 2 81 
1100080 translocate transportation 5 31 
1100081 underexpress negative regulation 3 0 
1100082 upregulate positive regulation 4 86 
1100083 synthesize create 6 634 
1100085 remove negative regulation 3 0 
1100086 affect vague 8 1 
1100087 transport transportation 5 247 
1100088 limit negative regulation 3 88 
1100089 metabolize vague 8 445 
1100090 control vague 8 1 
1100091 change vague 8 461 
1100092 encode transcription 7 33 
1100093 influence vague 8 136 
1100094 catalyze positive regulation 4 5 
1100095 catalyze positive regulation 4 2 
1100096 generate create 6 110 
1100097 reconstruct create 6 1 
1100098 decarboxylate modification 2 14 
1100099 oxidize modification 2 3 
1100100 catabolize modification 2 9 
1100101 accept association 1 1 
1100102 reduce modification 2 306 
1100103 subtract negative regulation 3 3 
1100104 dehydrogenate modification 2 2 
1100105 carboxylate modification 2 11 
1100106 import transportation 5 1 
1100107 convey transportation 5 1 
1100108 utilize vague 8 85 
1100109 alter vague 8 231 
1100110 disassemble modification 2 3 
1100111 depolymerize modification 2 1 
1100112 remove negative regulation 3 110 
1100113 nitrate modification 2 18 
1100114 perceive association 1 2 
1100115 receive association 1 499 
1100116 dephosphorylate modification 2 34 
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1100117 transmit transportation 5 21 
1100118 deregulate negative regulation 3 1 
1100119 interact vague 8 219 
1100120 transduce transportation 5 5 
1100121 consume vague 8 13 
1100122 breakdown modification 2 22 
1100123 disassociate association 1 1 
1100124 stabilize positive regulation 4 34 
1100125 moderate vague 8 20 
1100126 delay negative regulation 3 34 
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Appendix V 300 sentences 

http://ifsc.ualr.edu/jdberleant/papers/LifengZhangDissertationAppendixV.txt 

 

http://ifsc.ualr.edu/jdberleant/papers/LifengZhangDissertationAppendixV.txt�
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Appendix VI Sentences’ score by three different combination methods 

Interaction 
described? 

ALL PRI ORI 
Interaction 
described? 

ALL PRI ORI 

1 0.425 0.891 0.795 0 0.328 0.831 0.735

1 0.322 0.783638 0.688 0 0.359 0.867 0.794

1 0.336 0.805 0.706 1 0.661 0.976 0.968

0 0.58 0.965 0.936 0 0.681 0.977 0.971

0 0.633 0.973 0.958 0 0.661 0.976 0.968

1 0.449 0.909 0.835 1 0.659 0.976 0.966

1 0.429 0.924 0.857 0 0.361 0.834 0.75

1 0.429 0.924 0.857 0 0.401 0.907 0.818

1 0.59 0.967 0.94 1 0.401 0.907 0.818

1 0.498 0.947 0.891 1 0.303 0.764 0.644

0 0.485 0.943 0.883 1 0.556 0.962 0.929

1 0.367 0.884 0.769 1 0.62 0.972 0.954

0 0.4 0.907 0.834 1 0.569 0.963 0.931

1 0.405 0.938 0.865 1 0.406 0.881 0.776

0 0.475 0.921 0.854 1 0.61 0.97 0.95

0 0.544 0.96 0.924 0 0.606 0.973 0.958

1 0.622 0.973 0.957 1 0.446 0.907 0.832

1 0.62 0.972 0.954 0 0.476 0.921 0.845

1 0.633 0.973 0.958 0 0.44 0.902 0.825

1 0.633 0.973 0.958 1 0.437 0.948 0.892

0 0.622 0.972 0.954 0 0.676 0.977 0.97

1 0.64 0.974 0.96 1 0.696 0.978 0.973

0 0.465 0.916 0.833 1 0.558 0.961 0.925

1 0.668 0.977 0.969 1 0.506 0.935 0.878

0 0.4 0.906 0.816 1 0.437 0.948 0.892

1 0.62 0.972 0.954 1 0.652 0.976 0.966

1 0.709 0.978 0.975 1 0.602 0.969 0.946

1 0.659 0.976 0.966 1 0.705 0.978 0.974

1 0.401 0.907 0.818 1 0.705 0.978 0.974

1 0.686 0.977 0.971 1 0.705 0.978 0.975

1 0.401 0.907 0.818 1 0.095 0.456 0.23

1 0.461 0.913 0.829 0 0.437 0.948 0.892

1 0.463 0.955 0.913 1 0.458 0.915 0.839

0 0.437 0.948 0.892 1 0.458 0.915 0.839

1 0.44 0.902 0.825 0 0.676 0.977 0.97

1 0.7 0.978 0.973 1 0.346 0.902 0.811
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0 0.51 0.951 0.899 1 0.321 0.776 0.683

1 0.495 0.93 0.869 1 0.587 0.971 0.951

0 0.381 0.894 0.789 1 0.727 0.979 0.978

1 0.475 0.921 0.854 1 0.437 0.948 0.892

1 0.703 0.968 0.954 1 0.451 0.911 0.831

1 0.033 0.033 0.971 0 0.523 0.954 0.906

1 0.441 0.948 0.892 1 0.455 0.913 0.835

0 0.401 0.907 0.818 0 0.436 0.906 0.822

1 0.666 0.976 0.968 0 0.535 0.956 0.913

1 0.437 0.948 0.892 1 0.472 0.939 0.874

1 0.651 0.976 0.966 0 0.612 0.97 0.95

1 0.477 0.925 0.861 0 0.514 0.938 0.884

1 0.652 0.976 0.966 0 0.405 0.876 0.774

1 0.651 0.976 0.966 0 0.503 0.934 0.875

1 0.48 0.927 0.864 0 0.322 0.789 0.677

1 0.47 0.922 0.855 0 0.4 0.906 0.816

1 0.579 0.965 0.935 0 0.364 0.838 0.753

0 0.4 0.906 0.816 0 0.42 0.888 0.796

1 0.686 0.977 0.971 0 0.341 0.811 0.711

1 0.419 0.888 0.797 0 0.31 0.775 0.653

0 0.578 0.966 0.938 0 0.429 0.924 0.857

1 0.448 0.909 0.834 0 0.485 0.925 0.856

1 0.634 0.974 0.962 0 0.033 0.033 0.033

1 0.591 0.967 0.941 0 0.44 0.902 0.825

1 0.033 0.033 0.078 0 0.405 0.876 0.774

0 0.472 0.939 0.874 0 0.429 0.924 0.857

1 0.487 0.932 0.879 0 0.367 0.841 0.756

1 0.726 0.979 0.978 0 0.405 0.876 0.774

1 0.518 0.963 0.93 0 0.402 0.907 0.819

1 0.501 0.932 0.869 0 0.343 0.813 0.713

1 0.558 0.961 0.925 0 0.401 0.907 0.818

1 0.49 0.934 0.882 0 0.477 0.921 0.849

1 0.328 0.831 0.735 0 0.344 0.815 0.715

1 0.611 0.973 0.957 0 0.354 0.826 0.743

1 0.4018 0.9065 0.8183 0 0.493 0.929 0.863

1 0.633 0.973 0.958 0 0.364 0.838 0.753

1 0.4018 0.9065 0.8183 0 0.402 0.907 0.819

1 0.62 0.972 0.954 1 0.591 0.967 0.941

0 0.558 0.961 0.925 0 0.484 0.943 0.883

1 0.561 0.968 0.944 0 0.361 0.835 0.749

1 0.643 0.974 0.962 0 0.4018 0.9065 0.8183
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1 0.4018 0.9065 0.8183 1 0.4018 0.9065 0.8183

0 0.506 0.935 0.878 0 0.534 0.956 0.913

0 0.42 0.888 0.796 0 0.336 0.805 0.706

0 0.483 0.925 0.796 0 0.361 0.834 0.75

0 0.457 0.912 0.825 0 0.643 0.974 0.962

1 0.612 0.97 0.95 1 0.429 0.924 0.857

0 0.324 0.791 0.679 0 0.424 0.892 0.811

0 0.42 0.888 0.796 1 0.429 0.924 0.857

1 0.659 0.976 0.966 0 0.508 0.952 0.906

0 0.133 0.574 0.325 0 0.623 0.972 0.954

0 0.343 0.813 0.713 0 0.344 0.815 0.715

1 0.593 0.972 0.955 0 0.457 0.911 0.831

0 0.448 0.906 0.823 0 0.333 0.8 0.702

0 0.513 0.937 0.879 0 0.469 0.917 0.842

1 0.476 0.921 0.845 1 0.643 0.974 0.962

1 0.4 0.906 0.816 1 0.47 0.922 0.855

1 0.726 0.979 0.978 0 0.4 0.906 0.816

0 0.58 0.965 0.936 1 0.429 0.924 0.857

0 0.63 0.973 0.957 0 0.599 0.972 0.954

0 0.6 0.969 0.946 0 0.62 0.972 0.954

0 0.429 0.897 0.805 1 0.676 0.978 0.974

0 0.62 0.972 0.954 0 0.533 0.958 0.918

0 0.612 0.97 0.95 0 0.405 0.876 0.774

1 0.675 0.978 0.974 1 0.643 0.974 0.962

0 0.401 0.907 0.818 1 0.546 0.959 0.919

0 0.477 0.921 0.849 0 0.429 0.924 0.857

1 0.467 0.917 0.848 0 0.6 0.969 0.946

0 0.484 0.925 0.852 0 0.643 0.974 0.962

0 0.546 0.959 0.919 0 0.633 0.973 0.958

1 0.587 0.971 0.951 1 0.649 0.975 0.964

1 0.401 0.907 0.818 1 0.696 0.978 0.973

1 0.429 0.924 0.857 0 0.479 0.923 0.857

1 0.659 0.976 0.966 1 0.633 0.973 0.958

1 0.659 0.976 0.966 1 0.612 0.97 0.95

1 0.659 0.976 0.966 1 0.401 0.907 0.818

1 0.659 0.976 0.966 1 0.62 0.972 0.954

0 0.361 0.834 0.75 0 0.62 0.972 0.954

1 0.6 0.969 0.946 0 0.62 0.972 0.954

1 0.612 0.97 0.95 0 0.64 0.974 0.96
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0 0.401 0.907 0.818 0 0.401 0.907 0.818

1 0.429 0.924 0.857 1 0.444 0.907 0.818

1 0.465 0.915 0.838 1 0.416 0.915 0.831

0 0.333 0.8 0.702 1 0.612 0.97 0.95

0 0.417 0.887 0.805 1 0.589 0.967 0.942

1 0.344 0.815 0.715 0 0.437 0.948 0.892

1 0.659 0.976 0.966 0 0.401 0.907 0.819

0 0.491 0.929 0.866 1 0.7 0.978 0.973

0 0.506 0.935 0.878 0 0.612 0.97 0.95

0 0.498 0.945 0.86 1 0.499 0.932 0.872

1 0.453 0.908 0.827 1 0.401 0.907 0.819

1 0.485 0.87 0.766 1 0.61 0.97 0.95

0 0.396 0.925 0.856 1 0.467 0.917 0.848

0 0.126 0.558 0.312 0 0.666 0.976 0.968

1 0.649 0.975 0.964 0 0.401 0.907 0.818

0 0.485 0.925 0.856 0 0.367 0.841 0.756

1 0.487 0.927 0.863 1 0.635 0.974 0.962

1 0.48 0.927 0.864 0 0.453 0.932 0.852

0 0.483 0.945 0.892 1 0.651 0.976 0.966

1 0.581 0.971 0.952 1 0.448 0.906 0.823

0 0.426 0.895 0.801 1 0.643 0.974 0.962

1 0.495 0.93 0.869 0 0.429 0.924 0.857

1 0.633 0.973 0.958 1 0.557 0.961 0.924

1 0.623 0.972 0.954 1 0.484 0.943 0.882

1 0.58 0.965 0.936 1 0.501 0.932 0.869

1 0.429 0.924 0.857 1 0.357 0.83 0.747

1 0.666 0.976 0.968 0 0.471 0.919 0.851

1 0.643 0.974 0.962 1 0.612 0.97 0.95

0 0.406 0.877 0.782 1 0.429 0.924 0.857

1 0.591 0.967 0.941 0 0.459 0.915 0.844

1 0.525 0.943 0.892 0 0.269 0.596 0.596

1 0.506 0.935 0.878 0 0.499 0.932 0.872

0 0.556 0.962 0.929 0 0.421 0.888 0.791

1 0.508 0.952 0.906 1 0.401 0.907 0.818

1 0.612 0.97 0.95 1 0.509 0.936 0.876

1 0.599 0.972 0.954 1 0.488 0.927 0.856
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1 0.492 0.929 0.859 1 0.462 0.918 0.843

0 0.434 0.907 0.821 0 0.401 0.907 0.818

0 0.477 0.921 0.849 0 0.465 0.915 0.838

1 0.643 0.974 0.962 1 0.696 0.978 0.973

1 0.401 0.873 0.776 1 0.696 0.978 0.973

0 0.475 0.921 0.854 1 0.612 0.97 0.95

1 0.606 0.973 0.958 1 0.457 0.911 0.831

0 0.569 0.963 0.931 1 0.116 0.531 0.288
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Appendix VII The data about relationship between distance of IIT from biomolecules and IIT’s 

correctness 

 

 
Far  
correct  
IITs  
distance  

pyruvate 
dehydrogenase 
phosphofructinase 

glucose 
pyruvate 

atp 
myosin 

g-6-p 
starch 

iaa 
starch 

glucose 
starch 

cre 
cytokinin 

carotenoid 
ipp acetylcoa 

nitrite 
xanthine 

New 
verbs Total 

             

0 0 1 1 1 0 3 4 0 0 1 6 17 

1 0 2 5 1 0 3 1 0 4 2 5 23 

2 0 2 8 6 0 4 4 0 3 11 4 42 

3 0 11 5 2 0 3 5 0 7 3 6 42 

4 0 1 4 1 0 4 4 1 4 3 7 29 

5 0 1 0 3 0 1 4 0 3 7 7 26 

6 0 2 3 2 0 2 3 0 0 4 6 22 

7 0 1 5 2 0 2 2 0 4 7 12 35 

8 0 2 4 2 0 1 4 0 6 0 4 23 

9 0 1 4 1 0 4 4 0 4 4 4 26 

10 0 1 4 0 0 1 1 1 2 3 5 18 

11 1 0 3 3 0 1 1 0 1 2 9 21 

12 0 1 1 0 0 1 1 1 2 2 1 10 

13 0 1 4 1 0 0 0 1 2 2 3 14 

14 0 1 3 2 0 1 1 0 3 1 2 14 

15 0 4 0 2 0 0 0 0 2 3 1 12 

16 0 1 2 0 0 0 0 0 3 2 1 9 

17 0 0 1 0 0 0 1 0 2 0 2 6 

18 0 0 1 1 0 0 0 0 1 0 1 4 

19 0 0 0 0 0 0 0 0 1 1 1 3 

20 0 1 0 0 0 2 0 0 1 0 3 7 

21 0 0 0 1 0 1 0 0 0 0 0 2 
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22 0 4 0 0 0 0 0 0 1 0 0 5 

23 0 0 0 0 0 0 1 0 0 1 0 2 

24 0 1 2 0 0 0 0 0 0 1 4 8 

25 0 0 0 0 0 0 0 0 0 0 1 1 

26 0 0 0 0 0 0 0 0 0 1 0 1 

27 0 0 0 0 0 0 0 0 0 3 1 4 

28 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 1 0 0 0 0 0 1 

30 0 0 1 0 0 0 0 0 2 0 0 3 

31 0 0 0 0 0 0 0 0 1 0 1 2 

32 0 0 0 0 0 0 0 1 0 0 0 1 

33 0 0 0 0 0 0 1 0 0 0 0 1 

34 0 0 0 0 0 0 0 0 0 0 1 1 

35 0 0 0 0 0 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 0 1 0 0 1 

38 0 0 0 0 0 0 0 0 0 0 0 0 

 
Far  
IITs  
distance  

pyruvate  
dehydrogenase  
phosphofructinase 

glucose  
pyruvate 

atp  
myosin 

g-6-p 
 starch 

iaa  
starch 

glucose  
starch 

cre  
cytokinin 

carotenoid 
ipp acetylcoa 

nitrite  
xanthine 

New  
verbs Total odds 

0 0 1 1 1 0 3 4 0 0 3 6 19 8.5 

1 0 2 8 1 1 4 3 1 4 2 7 33 2.3 

2 1 9 10 7 1 5 6 0 3 13 8 63 2 

3 5 13 7 2 1 4 6 1 7 8 11 65 1.826087 

4 3 10 6 2 0 10 7 1 9 9 21 78 0.591837 

5 8 4 6 6 4 6 8 1 4 14 19 80 0.481481 

6 2 4 6 6 2 3 8 0 3 7 13 54 0.6875 

7 4 6 8 6 1 5 4 0 5 10 22 71 0.972222 

8 5 10 8 3 0 4 5 1 8 1 18 63 0.575 

9 3 5 8 2 2 4 5 0 7 8 13 57 0.83871 

10 5 7 8 2 3 4 1 3 5 3 11 52 0.529412 

11 4 6 5 7 2 2 3 1 4 2 17 53 0.65625 

12 2 3 2 2 1 4 1 2 2 4 9 32 0.454545 
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13 6 4 5 4 0 1 1 2 2 3 10 38 0.583333 

14 2 1 7 3 1 2 5 1 5 3 15 45 0.451613 

15 2 6 0 3 0 1 2 0 3 3 5 25 0.923077 

16 0 2 4 0 0 2 2 1 4 2 6 23 0.642857 

17 2 3 2 0 2 3 3 0 3 3 9 30 0.25 

18 0 1 3 3 1 0 0 1 2 0 4 15 0.363636 

19 2 2 0 0 0 2 3 1 1 1 4 16 0.230769 

20 0 2 1 0 1 3 0 0 1 2 11 21 0.5 

21 1 0 1 1 0 1 2 0 1 0 5 12 0.2 

22 1 4 2 0 0 1 0 0 4 0 2 14 0.555556 

23 1 1 0 1 0 0 2 0 0 1 4 10 0.25 

24 0 1 2 1 0 0 1 1 1 2 7 16 1 

25 1 0 0 0 0 0 0 1 0 1 4 7 0.166667 

26 1 1 0 1 0 1 1 0 1 1 6 13 0.083333 

27 0 1 0 0 0 2 0 0 0 3 1 7 1.333333 

28 0 1 2 0 0 0 0 0 0 0 2 5 0 

29 0 0 0 0 0 1 1 0 0 1 0 3 0.5 

30 0 0 1 1 0 1 0 0 2 1 1 7 0.75 

31 0 0 0 0 0 0 0 0 1 0 3 4 1 

32 0 0 0 0 0 0 0 1 0 0 0 1 #DIV/0! 

33 0 0 0 0 0 0 1 0 0 0 0 1 #DIV/0! 

34 1 0 0 0 1 0 0 0 0 0 1 3 0.5 

35 0 0 0 0 0 0 0 0 0 0 1 1 0 

36 0 0 0 0 0 0 1 0 0 0 1 2 0 

37 0 0 0 0 0 0 0 0 1 0 0 1 #DIV/0! 

38 1 0 0 0 0 0 0 0 0 0 0 1 0 
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Nearest  
correct  
IITs distance  

pyruvate  
dehydrogenase  
phosphofructinase 

glucose  
pyruvate 

atp  
myosin 

g-6-p  
starch 

iaa  
starch 

glucose  
starch 

cre  
cytokinin 

carotenoid 
ipp acetylcoa 

nitrite  
xanthine 

New  
verbs Total 

0 0 16 28 26 0 13 30 1 18 19 40 191 

1 0 8 14 0 0 5 5 2 14 11 17 76 

2 0 6 6 0 0 4 1 0 8 7 6 38 

3 0 2 2 1 0 3 3 0 5 11 15 42 

4 0 3 4 0 0 3 0 0 0 4 7 21 

5 1 0 0 0 0 1 3 0 4 5 3 17 

6 0 0 0 1 0 0 0 0 1 1 1 4 

7 0 2 3 1 0 3 0 1 1 1 1 13 

8 0 0 3 0 0 0 0 0 0 1 1 5 

9 0 0 0 1 0 0 0 0 1 1 1 4 

10 0 0 0 0 0 0 0 0 0 0 2 2 

11 0 0 0 1 0 0 0 0 0 0 1 2 

12 0 0 0 0 0 0 0 0 0 1 0 1 

13 0 0 0 0 0 0 0 0 3 0 2 5 

14 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 1 0 0 0 0 0 0 0 0 1 2 

16 0 0 0 0 0 1 0 1 1 0 0 3 

17 0 0 0 0 0 1 0 0 0 1 0 2 

18 0 0 1 0 0 0 0 0 1 0 1 3 

19 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 1 0 0 0 1 0 0 1 1 0 4 

21 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 1 0 1 2 

24 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 
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31 0 0 0 0 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 0 1 0 0 1 

35 0 0 0 0 0 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 0 0 0 0 0 

 
Nearest  
IITs  
distance  

pyruvate  
dehydrogenase  
phosphofructinase 

glucose  
pyruvate 

atp  
myosin 

g-6-p  
starch 

iaa  
starch 

Glucose 
 starch 

cre  
cytokinin 

carotenoid 
ipp acetylcoa 

nitrite  
xanthine 

New  
verbs Total odds 

0 2 36 40 31 3 18 38 5 22 34 73 302 1.720721 

1 10 19 22 2 4 9 15 3 18 19 47 168 0.826087 

2 6 12 7 3 3 10 4 1 15 9 29 99 0.622951 

3 5 11 12 5 1 9 6 1 5 19 32 106 0.65625 

4 2 7 7 6 5 6 4 1 5 10 20 73 0.403846 

5 5 5 5 2 2 5 10 0 4 8 11 57 0.425 

6 8 4 2 3 2 3 2 2 3 1 8 38 0.117647 

7 4 4 6 3 0 6 2 2 4 1 12 44 0.419355 

8 3 2 5 1 0 1 0 1 1 2 5 21 0.3125 

9 1 2 1 2 0 1 2 1 4 1 5 20 0.25 

10 3 1 0 0 1 0 1 0 0 0 7 13 0.181818 

11 5 1 0 2 0 1 0 0 0 1 4 14 0.166667 

12 1 0 1 1 3 1 0 1 2 1 4 15 0.071429 

13 2 1 1 1 0 1 1 0 4 0 5 16 0.454545 

14 1 0 0 0 0 2 0 0 0 0 0 3 0 

15 0 1 0 0 0 0 0 1 0 1 3 6 0.5 

16 1 1 2 0 0 1 0 1 1 0 1 8 0.6 

17 1 1 1 1 0 1 1 0 0 2 2 10 0.25 

18 0 0 1 0 0 0 0 0 1 0 4 6 1 

19 1 0 0 1 0 0 1 0 0 0 0 3 0 

20 0 1 0 0 0 2 0 0 1 1 0 5 4 
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21 1 1 0 1 0 1 0 0 1 1 1 7 0 

22 0 0 0 0 0 0 0 0 0 0 1 1 0 

23 0 0 0 0 0 0 0 0 1 0 2 3 2 

24 0 0 0 0 0 1 0 0 0 0 1 2 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 #DIV/0! 

26 0 0 0 0 0 0 0 0 0 0 0 0 #DIV/0! 

27 0 0 0 0 0 0 0 0 0 0 2 2 0 

28 1 0 0 0 0 0 0 0 0 1 0 2 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 #DIV/0! 

30 0 0 0 0 0 0 0 0 0 0 0 0 #DIV/0! 

31 0 0 0 0 0 0 0 0 0 0 0 0 #DIV/0! 

32 0 0 0 0 0 0 0 0 0 0 0 0 #DIV/0! 

33 0 0 0 0 0 0 0 0 0 0 0 0 #DIV/0! 

34 0 0 0 0 0 0 0 0 1 0 0 1 #DIV/0! 

35 0 0 0 0 0 0 0 0 0 0 0 0 #DIV/0! 

36 1 0 0 0 0 0 0 0 0 0 0 1 0 

37 1 0 0 0 0 0 0 0 0 0 0 1 0 

38 1 0 0 0 0 0 0 0 0 0 0 1 0 
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Appendix VIII Acronyms List 

 
MEDLINE Medical Literature Analysis and Retrieval System (MEDLARS) 

Online 

MIPS Munich Information center for Protein Sequences  

KEGG Kyoto Encyclopedia of Genes and Genomes 

BIND Biomolecular Interaction Network Database 

IR  Information Retrieval 

POS Part-Of-Speech 

NLP Natural Language Processing 

DPBE Dragon Plant Biology Explorer 

ACS Associative Concept Space 

LMMA Literature Mining and Microarray Analysis 

tf Term Frequency 

idf Inversed Document Frequency 

BEV Bird’s Eye View 

GO Gene ontology 

SLIM Slider Interface for MEDLINE/PubMed searches 

BLAST Basic Local Alignment Search Tool 

SGO Semantic Gene Organizer 

GENIES GENomics Information Extraction System 

GIS Gene Information System 

GIFT Gene Interactions Finder in Text 

BN Bayesian Network 

CRF Conditional Rrandom Field 
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Appendix VIIII Birds Eye View 

1. Introduction  

As biotechnology rapidly progresses, more and more experimental data are becoming 

available. Extraction of knowledge and conclusions from those data are requirements of 

biological research. However, it can be hard to investigate so much data manually, to find 

useful genes from long lists of numbers and to extract useful biological knowledge. Here 

we introduce a software application to help biologists analyze voluminous experiment 

data, such as microarray data. It gives biologists a graphical “Birds Eye View” of 

experimental data, hence its name, “BirdsEyeView.” A lot of work has been done to 

visualize biological information like biocyc (Karp et al., 2002), reactome (Matthews et al., 

2008) and FCModeler (Dickerson et al., 2003). Different from them, which directly draw 

the information, BEV maps information onto preexisting biological figures.  

BirdsEyeView (BEV) is a part of the MetNet platform. At the center of the MetNet 

platform is the MetNet database (MetNetDB). This database has biochemical interactions 

and pathways, genomic, gene ontology, transcriptomic, proteomic, and metabolomic data 

on Arabidopsis thaliana and other plants.  

BEV uses the information stored in MetNetDB and data in the experiment data file to 

give users overviews of the experimental data. It shows a unique view of experimental 

results by mapping the experimental entities (genes or others biomolecules) to different 

views based on those entities’ profile information in MetNetDB. In addition, it 

graphically (by color and distribution of entities among compartments) indicates 

experiment differences among entities across different compartments in different views. 

Currently, BEV provides cellular view, pathway view, Gene Ontology function view, and 

Gene Ontology process view functions, in which cell view is on a fixed cellular picture, 

pathway view mapping is dynamically implemented by Treemap (Bederson et al., 2002), 

and Gene Ontology view is on a series of hierarchy rectangles representing Gene 

Ontology groups. BEV accepts input data and then maps the data in the file to those four 

views to help users find interesting results about cellular compartments, pathways, and 

biological processes and functions. 
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2. System features 

2.1 Program overview 

BEV is a stand-alone Java application that accepts users’ input data and maps the data to 

different views to give users a “bird’s-eye view” of their input data. BEV reads the list of 

biological entity IDs in an input file and finds the corresponding biological information 

from MetNetDB including name, location, pathway, Gene Ontology information, and so 

on. Based on this information, the program shows the biomolecular entities in the input 

file, e.g., genes, as small graphical icons (circles or rectangles) in different places in the 

different views. In addition, the program adjusts the icons’ colors based on the average 

value of entities represented by the icons. Then patterns of experimental input will be 

shown in different views so users can view useful information such as significant genes, 

compartments, pathways, Gene Ontology Processes, and so on. Users can switch among 

views and experiments to see different biomolecule’s distributions.  

 

2.2 Input data 

The general use of BEV is to show experimental result, like microarray result data. For 

displaying microarray results, the input could be in several files: a chip list file containing 

a list of Affymetrix probe ID (chip probes) in the experiments, a file containing the list of 

experiments, or a file of numbers describing the value of experimental results. 

Alternatively the input could be one file containing probes, experiments, and numbers 

together. Besides probe ID’s microarray data input above, BEV could accept other 

similar format input files as long as it provides a list of entities IDs like locus IDs 

acknowledgeable by BEV.  

2.3 User Interface 

The main interface is divided into 4 panels (Figure 1): the info panel, view panel, legend 

panel, and annotation panel. In the info panel, users can use buttons and drop-down lists 

to switch experiments and views, load files, and do other view-related operations. 

The view panel is the largest panel, and holds the different views (displayed one at a time 

by default) including biomolecular entities in the input file shown as icons inside the 

views.  

The legend panel shows the legend of the view panel and gives user options for the view 

panel, including color range values, cut values for showing biomolecular entities whose 
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data values are over or under this value, number of entities per icon for icons representing 

multiple entities, and the maximum number of entities to show in the annotation panel 

before opening a new frame. The number of entities per icon has a minimum value based 

on number of entities in cell compartments and sizes of the compartments. Users can 

adjust the icons to make one icon represent more or less entities as long as it is over the 

minimum value. 

The annotation panel is at the bottom. It shows detailed information about entities 

represented by a graphical icon the user selects in the view panel. 

2.4 Cell View 

In this view, an image showing the structure of a plant cell is displayed. The main 

compartments, nucleus, plastid, vacuole, mitochondrion, golgi apparatus, endoplasmic 

reticulum, apoplast, thylakoid, chloroplast, cytosol, and membranes of some 

compartments are shown with their cellular location relationships.  

After loading the input files, the program displays entities from the list of input files in 

appropriate compartments by drawing graphical icons representing entities in 

compartments based on location information about each entity loaded from MetNetDB.  

 

Color-coding the icons 

An important function is finding entities that are significant relative to other entities. The 

experimental data is used to color the circle and rectangular icons. The program uses the 

YIOrRd (light yellow to orange to dark red) color system of the RColorbrewer color 

combination strategy (http://casoilresource.lawr.ucdavis.edu/drupal/node/192) (Brewer et 

al., 2002) to indicate different values (such as expression levels in microarray data). 

Higher values usually get darker colors. The program automatically adjusts the color 

distribution based on the current value range of the entities, so users can more readily 

notice differences between low and high values. However, users can adjust the color 

range to explore entity value distributions over a narrower value range. In addition, all 

entity icons in a compartment are arranged from low value (light colors) to high value 

(dark colors). Using this coloring strategy, users can easily notice significant entities or 

an interesting distribution of entities in a particular compartment.  

 

http://casoilresource.lawr.ucdavis.edu/drupal/node/192�
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Figure 29. Main interface 

 

Automatic scaling 

 

The size of each compartment space in the image of cell view and the icon size is used to 

calculate how many entity icons it can accommodate. When loading a large file holding a 

long list of entities, the number of entities in some compartments may exceed the 

maximum number of icons the area of the compartment in the image can accommodate. 

In this situation, the program will use one icon to represent multiple entities. The 

numbers of entities per icon is determined by the number of entities that need to be 

indicated and the space available in the image of the cell compartment. In this way, the 

application can accept inputs with any number of entities. When a unit represents several 
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entities, its shape is a rectangle, rather than a circle, which is used for an icon 

representing only one entity. This information is noted in the legend panel. 

 

 
Figure 30. Cell view 

Calling up detailed annotations 

 

When an icon only represents one entity, if the user moves the mouse over it, basic 

information about the entity will be shown in a pop-up “tooltip” temporary window 

beside it. But when an icon represents multiple entities, the pop-up window only shows 

number of entities and their average value. To see more detailed information, the icon 

may be clicked. Then a list of rows, each containing the name, value, location, and 

pathway of an entity belonging to the icon, is shown in the bottom annotation panel. 
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Meanwhile, the icon will be highlighted by surrounding it with a small blue circle. When 

the user moves the mouse over the highlighted icon, the annotation panel will 

automatically scroll to rows with detailed information about the entities represented by 

the icon, if there are multiple highlighted icons and hence multiple groups of rows of 

detailed information. If the highlighted icon is clicked again, the highlighting and the 

icon’s rows in the annotation panel will disappear. To remove all highlight statuses at 

once, the right mouse key may be clicked on any highlighted icon and the first item on 

the resulting pop-up menu selected. The second item on that menu is for viewing more 

detailed information. A new web browser will open to show information provided by 

another application in MetNet, AtGeneSearch 

(http://metnet.vrac.iastate.edu/MetNet_atGeneSearch.htm). This will display all 

information related to this entity stored in MetNetDB. 

When an icon represents many entities, the list of rows in the annotation panel will be 

very long. Showing a list of too many rows and scrolling to some positions in such a list 

can tend to make users lose focus. To avoid that, the program will open a frame to show a 

list of rows of entity information when more than 10 entities belong to the icon. This 

number is adjustable in the legend panel. (If adjusted to 0, then the new frame will be 

always open when an icon is clicked.)  

 

2.5 Pathway View 

The pathway view shows the entities in the pathways in which they participate and 

represents pathways as nested rectangles. The pathways and their corresponding cellular 

compartments information are preloaded by the program from its configuration file and 

MetNetDB, and are independent from the input file. For the natural hierarchy 

relationships between cellular compartments and the pathways involved in, and the 

dynamic entities input, we used the Treemap (Bederson et al., 2002) method to display 

the results of mapping biomolecule entities onto different pathways as nested rectangles 

with entities icons. The application of Treemap here chooses the pattern of nested 

rectangles based on input file and preloaded pathway information. In general, the more 

entities a pathway contains, the larger size of the rectangle representing this pathway 

compared to other pathways’ rectangles involved in the same cellular compartment. The 

program divides a pathway view rectangle into different smaller rectangles in two levels. 
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All these rectangles are contained in a larger rectangle for the overall pathway view. 

Within this encompassing rectangle, cell compartments are second-level rectangles. 

These in turn contain the third-level rectangles representing the pathways. Pathway 

rectangles in a cellular compartment rectangle have the same color as the color of the 

compartment in the cell view, so users can easily see the correspondence between 

pathways and compartments. Many entities participate in multiple pathways, and many 

pathways are in multiple compartments, so they will appear multiple times in this display. 

As in the cell view, the arrangement of entity icons into pathway rectangles is based on 

the pathway information about each entity loaded from MetNetDB. Users can do the 

same operations on the entities icons that were described earlier for the cell view. 

 

2.6 GO Biological Process and Molecular Function Views 

BEV provides a Biological Process and Molecular Function view in addition to cellular 

components, which can be viewed from the cell view. The GO Biological Process and 

Molecular Function view displays and maps entities based on their Gene Ontology 

information stored in MetNetDB. The Gene Ontologies are structured as directed acyclic 

graphs. These can be organized as hierarchies, and one entity may belong to several 

hierarchies. 

 

The GO view shows each biomolecule entity in a Gene Ontology categories node in the 

categories graph as a small square (Fig. 32). The Gene Ontology 

(http://www.geneontology.org) contains three structured controlled vocabularies 

(ontologies): biological processes, cellular components and molecular functions.  

 

http://www.geneontology.org/�
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Figure 31. Pathway view 
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Figure 32. Gene Ontology (GO) view 

 

BEV first shows all inputted entities as graphical icons in one big rectangle. From there, 

users can click the “low” button in the info panel, or click the GO terms of a rectangle, 

hierarchy, etc., to show lower-level GO categories as smaller sub-rectangles holding 

entity icons. This process can be repeated, subdividing rectangles until the deepest 

(lowest) GO level. Users also can click the name of an open category, or the “up” button, 

to delete the sub-rectangles in the current rectangle and thus close the current category 

display. The colors of rectangles in different levels are different from each other and also 

different from entity icons’ colors, so users can easily see the different GO hierarchy 

levels and the entity icons.  

 

The design of entity icons in the GO view is the same as in the cell view: an icon can 

represent one or more entities, basic annotation information can be called up in pop-ups 

with more detail in the annotation panel, and fully detailed annotations can be called up 

in a new web browser window.  
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2.7 Comparison function and linked view display 

 
Figure 33. Two views together 

 
Besides displaying one sample one time, BEV supports comparison of two samples. 

Users can see result value differences, folds (the first experiment’s values divided by the 

second), and difference folds (result value differences divided by the second experiment’s 

values) for the same entities in two different experiments. The display technique is 

similar to that used for a single experiment. The user simply needs to choose the two 

experiments and the comparison desired.  

 

BEV also can show two views together. This allows users to track entities across 

different views. Users may choose this option from the view options box and then choose 

the two views to be shown. Then the entities in the input file will be displayed in two 

views at the same time. Users can do the same operations on the entity icons as in the 

single view. However, because each view in a two-view display has less screen space, 

some details of a view might not be the same as when only a single view is displayed. For 

example, in Figure 5, when cell view and pathway view are shown together, entity icons 

in the pathway view become multiple-entity rectangles instead of the larger number of 

circles that appear when displaying just the pathway view. By comparing views side by 

side, some cell, pathway, and GO Biological Process or Molecular Function properties of 

interesting entities can be shown simultaneously.  
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3. BirdsEyeView, PathBinder and MetNet 

As mentioned before, BirdsEyeView (BEV) is a part of the MetNet platform and the 

MetNet bioinformatics platform is a suite of software applications designed for 

bioinformatics analysis. Each part of the suite provides different functions for biologists’ 

needs. For example, PubMed Assistant provides an interface that help biologists search 

PUBMED more easily. They are all managed and supported by the MetNet platform, and 

can communicate with each other inside the platform, which means one can call another 

to provides the user with the function of the called component. For example, if BEV 

users find two interesting genes in their graphical view, they can ask BEV to send 

information about these two genes to PathBinder through MetNet platform. PathBinder 

will return extracted interaction descriptions to BEV and then to the users who called it to 

help explore the related literature about these two genes to users. In the reverse direction, 

PathBinder can ask BEV to show genes graphically if PathBinder’s users need a 

graphical view for two genes. All software inside MetNet platform communicate and 

combine together to give biologists a comprehensive bioinformatics software suite.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 34. BEV, PathBinder, and MetNet 
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4. Conclusion 

BEV provides cell, pathway, GO Biological Process, and GO Molecular Function views 

for experimental or similar data. Users can easily see important biological information 

about each entity in the input both graphically and with annotations. Users can flexibly 

zero in on interesting entities, cell compartments, pathways, biological processes, and 

molecular functions relevant to their experiments based on the locations and colors of the 

entity icons. These capabilities help support the needs of systems biologists to view 

experimental data both in broaden contexts as well as in considerable detail. 
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